Transition Metal-Catalyzed Oxidation of Sulfur(lV) Oxides. Atmospheric-Relevant Processes and Mechanisms

Christian Brandt and Rudi van Eldik*

Institute for Inorganic Chemistry, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany

Received March 29, 1994 (Revised Manuscript Received August *15,* 1994)

Contents

ln froduction

The transition metal-catalyzed oxidation of sulfur- (IV) oxides has been **known** for more than **100** years (literature bibliographies: **1882-1951** see ref **1; 1897-1981** see ref **2).** It has resulted in numerous and sometimes contradictory reports. There is a significant lack **of** information on the actual role of the transition metal-catalyzed reactions, and much of the earlier work was performed without a detailed knowledge of the chemical system. For this reason it is our goal to focus on the role of transition metal ions in the oxidation of sulfur(IV) oxides in terms of the coordination chemistry involved, as well as the stability and chemical behavior of the various participating species.

The oxidation process of **sulfur(IV)** oxides plays an important role in atmospheric chemistry (e.g. acid rain formation) as well as in industrial processes (e.g. desulfurization of plume gases and ore). The present report deals with the mechanism of the transition metal-catalyzed oxidation of sulfur(IV) oxides with the aim to discuss this in terms of atmospheric and chemical processes. In addition, we would like to emphasize the key role **of** oxygen in these processes.

Section **1** presents basic information on emission, distribution, and deposition of trace compounds and

Christian Brandt was born in **1962** in Dortmund, Germany. He studied chemistry at the University of Dortmund, where he received his Chemistry Diploma in **1990.** In **1991** he started his graduate studies at the private University of Witten/Herdecke, working under Professor Rudi van Eldik. His research project concerned mechanistic studies on the metal-catalyzed autoxidation reactions of sulfur(IV) oxides in aqueous solution. He received his Ph.D. in 1994. He is the co-author of four papers in scientific journals. At present he is working at the Institute for Tropospheric Research, Leipzig (Germany). Areas of interest to him are biotechnology and analytical and environmental chemistry.

Rudi van Eldik was bom in **1945** in Amsterdam, The Netherlands. and grew up in South Africa, where he received his B.Sc., M.Sc., and Ph.D. **(1971)** degrees from Potchefstroom University. He spent two years **(1972** and **1978)** with Gordon M. Harris at SUNY at Buffalo and one year as Alexander von Humboldt Fellow with Hartwig Kelm at the University **01** Frankfurt. He was appointed as Professor of Chemistry at Potchefstroom University **(1979)** and was awarded the Raikes Medal by the SA Chemical Institute in the same year. He moved to the University of Frankfurt in **1980,** where he completed his Habilitation in Physical Chemistry **(1982).** He was appointed as Professor for Inorganic Chemistry at the University of Witten/Herdecke in 1987. In 1994 he accepted a Chair for Inorganic and Analytical Chemistry at the University of Erlangen-Nürnberg. His research interests are in mechanistic studies of inorganic, organometallic, and bioinorganic reactions, with special emphasis on the application of high-pressure techniques.

^a SO_x. ^b Niedersachsen. ^c Nordrhein-Westfalen, 1987. ^d Value includes road traffic and all sorts of mobile sources. ^e Expressed as S. ^f Eastern Transvaal. ^g Expressed as N. ^h Expressed as NO₂. ^{*i*} NO

their possible reaction products. From this section it follows that, for the present emission quantities in the Northern Hemisphere, $SO₂$ is the major precursor for acid rain formation.

The uncatalyzed and transition metal-catalyzed oxidation of sulfur (IV) oxides is controlled by the chemistry of these species. The main parameter is pH, since sulfur(1V) oxides and transition metal ions exhibit characteristic pH-dependent speciations in aqueous solution. Each species shows a different reactivity and the chemistry of these species is the basis for understanding the complex reaction mechanisms. Fundamental information concerning the behavior of sulfur(1V) oxides, transition metals, and oxygen in aqueous solution, is therefore given in section 2.

Fundamental considerations with respect to atmospheric relevant redox reactions and the individual atmospheric oxidation processes of sulfur (IV) oxides, are presented in section **3.** Beside the uncatalyzed pathways, the main focus will be on the transition metal-catalyzed autoxidation of sulfur(1V) oxides. Possible reaction pathways for homogeneous catalysis are discussed, whereas heterogeneous catalysis is only briefly summarized. In addition, results on the role of oxygen and other reaction parameters on the overall processes are briefly reviewed.

In the case of the transition metal-catalyzed autoxidation of sulfur(1V) oxides there has been a contradictory discussion in the literature concerning which transition metal ion is the most important catalyst in the atmosphere (see section **4).** On the basis of the information given in sections **1-3,** we will discuss the possible role of the transition metalcatalyzed pathway in the overall atmospheric oxidation processes of sulfur(1V) oxides.

Figure 1.1. Transformation of sulfur species in the troposphere. 19

1. Emissions and Atmospheric Processes

1 -1. **Emissions**

 SO_2 and NO_x ^a emissions are mainly responsible for the acid deposition in North America and Europe. These trace substances are emitted by both natural and anthropogenic sources. The global SO_2 and NO_x

⁴It is convenient to refer to the family of oxidized nitrogen species as $NO_y = NO_x + HNO_2 + HNO_3 + N_2O_5 + PAN +$ particulate nitrates, where $NO_x = NO + NO_2$ ³ The contributions of the individual daytime where $NO_x = NO + NO_2$ ³ The contributions of the individual daytime nitrogen species to the total NO_y in the troposphere are HNO₃ 43%, NO_x 14%, particulate nitrates 5%, $PAN \le 5\%$.⁴

Republic. N_2O . N_2O , expressed as N. N_1N_2 , expressed as NO₂. $N_2N_1N_2$, calculated as N. N_2O , calculated as N.

emissions are estimated to be in the range of $(130 180)\times 10^{12}$ g of S a⁻¹ and $(50-120)\times 10^{12}$ g of N a^{-1} , respectively.^{3,5-7} In general, there is a strong decrease in emission observed from north to south. The anthropogenic emission of pollutants in the Northern Hemisphere is much higher than in the Southern Hemisphere (see e.g. ref 8). Whereas ca. 90% of the emitted sulfur compounds come from

anthropogenic sources in the Northern Hemisphere, this figure is down to **7%** for the Southern Hemi sphere.⁹⁻¹¹ In the case of NO_x species, 40% is emitted by natural sources.12 **A** detailed literature evaluation of the contribution of natural and anthropogenic sources on the global SO_2 and NO_x emissions is given by Bubenick.13 The north to south decrease has also been observed for trace gases like *CO2,* CO, and

 $CH₄$.¹⁴ The concentration of carbon containing particles (continental origin) in the Northern Hemisphere, viz. 0.45 μ g of C m⁻³, is much higher than in the Southern Hemisphere, viz. 0.06 μ g of C m^{-3.15}

The most important sulfur species in the atmosphere are COS, CS_2 , $(CH_3)_2S$, H_2S , SO_2 , and $SO_4^{2-16-18}$ The transformation of these compounds in the troposphere exhibits a clear tendency toward the higher oxidation state (Figure 1.1). An overview of atmospheric relevant oxidation processes for sulfidic sulfur species to $SO₂$ is given by Tyndall and Ravishankara.²⁰ For the atmospheric cycle of $(CH_3)_2S$, see for example ref 21. The most important nitrogen compounds in the environment are N_2O , NO, NO_2 , and $\mathrm{NH_4}^+$ and $\mathrm{NO_3^-}$ aerosols. 22,23

Anthropogenic sources of $SO₂$ are normally combustion processes. For Western Europe the major source is the generation of electricity $(\approx 45\%)$, followed by the industrial sector (\approx 40%, there of ca. 75% from fuel combustion). 24 Traffic is the main anthropogenic source of NO and $NO₂$ (\approx 44%) followed by processes for energy production $(\approx 22\%)$ and industrial combustion $(\approx 10\%)$.²⁴ In the case of traffic, it should be mentioned that passenger cars emit around 72% of the total emitted NO_x , whereas the emission from trucks contributes $65-70\%$ to the total SO_2 emissions.25 Further information is given in Table 1.1.

SO2 plays a minor role in the case of natural sulfur emissions (see ref 42). The most important natural SO_2 sources are volcanoes with $(2-5) \times 10^{12}$ g of S $a^{-1.5,9}$ Other important sulfur sources are sea spray $(SO_4^{2-}, 175(\pm 50\%) \times 10^{12}$ g of S a⁻¹), and biogenic sulfur sources, e.g. from bacterial activity (H₂S, $(100 280)\times10^{12}$ g of $\rm\bar{S}$ a⁻¹, (CH₃)₂S, (3–32) \times 10^{12} g of S a^{-1} ; COS, $(0.1-2.5) \times 10^{12}$ g of S a^{-1} ; CS₂, $(0.2-5) \times$ 10^{12} g of S a⁻¹).⁵ A summary of anthropogenic and natural emitted sulfur and nitrogen compounds is given in Table 1.2. Biomass burning, e.g. forest or grassland fires, has to be considered as a major source of atmospheric sulfur in remote continental regions, especially the tropics.⁴⁸ In the case of NO_x emissions biomass burning contributes up to 40% to the total global emission.⁵⁹

When comparing anthropogenic and natural sources it should be mentioned that natural sources are globally distributed, whereas anthropogenic sources are concentrated in populated areas. Thus, the concentration of the individual pollutants depends on the area over which they are measured (Figure 1.2). (See Table 1.3 for atmospheric SO_2 and NO_x concentrations.) The anthropogenic sulfur emission in the northwest of the **USA** is for example with a 90% contribution to the overall emitted amount of sulfur much higher than average.79 An important anthropogenic source of SO2 has recently been the burning oil fields in Kuwait following the Gulf War. The daily SO_2 emission was estimated to be 4×10^{10} g.⁸⁰

The time-dependent development of the emission of pollutants (Table 1.4) can be clearly followed in snow samples, e.g. from Greenland and other polar regions, because these ice sheets allow us to trace the evolution of the acid precipitation in a remote location that is free from local effects.^{$51,92$} In addition, sediments have also been used in order to follow the

Table 1.3. Atmospheric *SO2* **and NO, Concentrations**

Table 1.5. Atmospheric SO_2 and NO_y Concentrations			
area	concentration (μ g m ⁻³)	ref	
	SO ₂		
NW of USA	$0.83 - 1.64$	64	
Mid-W of USA	10.15	65	
Amsterdam Island	0.11^a	66	
Amsterdam Island	$0.013 - 0.019b$	66	
Antarctica	0.13 ^c	67	
Mediteranian Sea	2.27 ^c	67	
Europe	$2.7^{a,c}$	68	
Europe	7.0 ^{b,c}	68	
Northern Michigan	7.55^{b}	69	
Dübendorf (CH)	$6 - 60$	70	
London	$44 - 49^a$	39	
London	$71 - 77$ ^b	39	
Rome	$60 - 75$ ^c	71	
New York	64	35	
	NO _y		
Atlantic ocean	$0.1 - 5.6^d$	72	
Antarctica	$0.03^{e,f}$	73	
Northern Michigan	0.69 bs	69	
Northern hemisphere	$1 - 2.5^h$	12	
Northern Michigan	$1.19^{b,e}$	69	
Northern Michigan	$3.76^{b,i}$	69	
SW of USA	63^i	74	
New York	78^i	35	
Germanv	1.1 ^g	75	
Germany	3.0 ^h	61	
Germany	$7.68^{b,d,j}$	75	
Frankfurt	$155.4^{i,m}$	76	
Berlin	$296.1^{i,m}$	76	
London	$81.9 - 94.5^{a,i}$	39	
London	$84.0 - 90.3^{b,i}$	39	
London	$17.6 - 25.7a,k$	39	
London	$44.9 - 47.3$ b,k	39	
London	264	77	
London	$90.3^{i,l}$	78	
London	$888.3^{i,m}$	76	
Glasgow	$54.6^{i,l}$	78	
Manchaster	$56.7^{i,l}$	78	
Amsterdam	$109.2^{i,m}$	76	
Paris	$296.1^{i,m}$	76	

Summer. ^b Winter. ^c SO₂, calculated as S. ^d NO₃⁻ aerosols. *e* NO3-. *f* Mean concentration 1987-1991. **g** HN03. NOz, calculated as N. NOz. *j* Average value 1982-1983. *k* NO. *l* Mean concentration 1991. *^m* Maximum concentration, Dec 1991.

time-dependent development of the emission of pollutants (see e.g. refs 93-95). Snow deposited in Greenland since 1955 contains more than 10 times as much lead than snow that fell prior to 1840.96 In sediments of Tokyo Bay, Japan, Hirao et al.⁹⁴ found an increase in lead concentration since 1900 due to anthropogenic activities. Since 1970 there is a clear decrease observable in the lead concentration. The SO_4^{2-} and NO_3^- concentrations in Greenland snow of 1788-1800 (42 μ g of SO₄²⁻ g⁻¹ and 65 μ g of NO₃⁻ g-l, respectively) compared to present Greenland snow samples (1976-1977: 120 μ g of SO₄²⁻ g⁻¹ and 120 μ g of NO₃⁻ g⁻¹, respectively) has strongly increased⁹⁷ (see also refs 51 and 92). When averaged globally over the 1860 and 1980 period, sulfur emissions increased at the rate of 2.9% a⁻¹ and the nitrogen emissions at the rate of 3.4% a^{-1.46} After the second World War, the most rapid increases in emissions have been registered in Asia, Africa, and South America.46 As a result of special programs to reduce the amount of emissions during the last years (see e.g. refs $98-102$), it is reasonable to expect a change in the composition of acid deposition (see section 1.5). It is clear from Table 1.4 that in many

Figure **1.2.** Concentration of (a) chloride, nitrate, and sulfate and (b) of transition metals in European rain **(r)** and snow **(SI** water and bulk deposition (bd) samples for various sample locations; all samples collected between Sept 1993 and Feb 1994.⁶³ Locations were as follows: 1(r), 8(s), 9(s) Dortmund (semirural site, Germany); 2(r), 3(r), 5(bd), 12(s) Witten (urban area, Germany); 4(s) Goslar/Harz (semirural site, Germany); 6(r) Krakow (urban area, Poland); 7(s) Hajnowka (rural area, Poland); 10(s) Spatind (rural area, Norway); 11(r) Katowice (urban area, Poland).

countries there is a general trend to reduce air pollution (see also refs 9, 103, 104), except for nitrogen oxides. The emission **of** nitrogen oxides increases in the Northern Hemisphere by approximately **1%** a-l **(1986).14**

Besides gaseous compounds, particles are also emitted from anthropogenic and natural sources (see Table **1.5** and section **1.2).** The fraction **of** aerosols emitted from anthropogenic sources **is** about 10% **of** the overall anthropogenic air pollution⁴⁵ (see also ref **116).** Some of these atmospheric particles have an

influence on atmospheric redox processes (see section **3.4).** Aerosols emitted from anthropogenic sources are mainly metal oxide containing fly ashes. Sea salt particles are the main source for natural emitted aerosols.105 The anthropogenic part of the overall aerosol emission is in the range of $5-30\%$.¹¹⁷

In view **of** atmospheric transition metal-catalyzed oxidation processes, the amount of emitted metals is an important parameter. For most **of** the heavy metals the dust bound emissions dominate. The anthropogenic emission of metals exhibited a drastic

^a Ruhr District. ⁵ During 1970–1986, +20%; 1986–1989, –10%. ^c Nordrhein-Westfalen. ^d Beginning of the statistical inquiries during 1975–1979. e During 1985–1990, -12.0% . f Area of the former German Democratic Republic (DDR). g During 1985–1990, -11.9% . *^t London. ⁱ SO₂. ^j During 1970–1983 nearly constant. ^k NO_x. <i>^l Kingdom of Saudi Arabia. ^m During 1986–1990; -12.5%.* Includes all of the USSR. *°* Values from Corrigendum, *Atmos. Environ.* **1993**, 27A (7), 1163–1164. *P* At Chembar (Bombay region); calculated from concentration values. q NO₂. Particulate matter from industrial emissions; 1981–1985, +5.7%; 1985–1989, -17.5% . Eastern parts of the USA. t Eastern Canada. " Dorset, central Ontario. " During 1980-1984 nearly constant.

^a31.7% from bush burning, 29.1% from fugitive dust from roads.

increase since the beginning of this century. $95,118$ For example, the globally emitted amount of copper, lead, and nickel increased from 1901-1910 to 1971-1980 by 1103%, 905% and **5060%,** respectively (according to data from ref 118). In the case of lead emissions, traffic is the major source.^{119,120} In Germany the

contribution of traffic to the overall lead emission in 1986 (4089 \times 10⁹ g) was 78%.²⁹ As in the case of other pollutants in general the emission quantities of heavy metals have been reduced in the last years (see e.g. refs 95, 103, 120, 121). For instance, in Chilton, a semirural site in Southern England, the concentrations of cobalt, iron and manganese in atmospheric aerosols decreased from 1957 to 1974 by 10.7%, 8.2% and 7.2%, respectively, while lead concentration exhibited no significant trend.¹⁰³ In Canada, since 1976 **methylcyclopentadienylmanga**nese tricarbonyl (MMT) has been used instead of lead as an antiknocking compound in gasoline. While the overall emitted amount of lead decreased by 28% during the period 1981-1990 in Canada, the overall emitted amount of manganese increased by 10% during the same period.¹²¹ An overview on the emitted amounts of metals into the atmosphere is given in Table 1.6. Although not much data are available for iron, it is evident that iron is the metal with the highest emission quantity. According to data of Gatz¹⁵⁰ the range of compositions of emissions for pollution sources in Chicago can be given as Fe $\gg \overline{Ni} > Mn > Cu > Co.$ In view of the transition metal-catalyzed oxidation in aqueous solution, iron and manganese are the most important catalysts (see section 3 and e.g. refs $151-153$). The atmospheric concentrations of iron and manganese are given in Table 1.7 (see also Figure 1.2).

For an analysis of sources of air pollutants see e.g. refs 110, 123, 147, 150, 185, and 186.

1.2. Aerosols

For a detailed treatment of atmospheric aerosol chemistry see ref 187. For problems of the global aerosol distribution see ref 188.

Aerosols can be separated in small $(0.1-1 \mu m)$ and coarse $(1-100 \mu m)$ particles and exhibit a characteristic distribution (Figure 1.3). The fine particles mainly originate from chemical processes and are usually acidic. The coarse particles are mainly nonacidic and caused by wind soil erosion and sea spray.^{108,190} This acid-alkaline properties of aerosols depending on their size have been observed very often.¹⁹¹⁻¹⁹³ While fine particles contain a higher fraction of acidic anions like SO_4^{2-} , NO_3^- , or Cl⁻, coarse particles contain a higher amount of metals.74 The coarse aerosols are mainly concentrated in the lowest atmospheric layer $(0-250 \text{ m})$.¹⁰⁸ 20% of the

of aged atmospheric aerosols (according to refs 187 and 229).

total aerosol particles are in the layer of $0-250$ m, whereas 50% are in the layer of $0-1000$ m.¹⁰⁸ Particle concentrations for different atmospheric conditions are given in Table 1.8, which clearly indicates an increase in trace substances under smog conditions. During winter smog, SO_2 , NO_x , and their oxidation products are the main species, whereas during summer smog, O_3 is the main compound.¹⁹⁷

The deposition velocity (see section 1.4) of aerosols depends on their size^{187,198,199} and therefore influences the lifetime of the aerosols in the atmosphere (see section 1.3), which can be a limiting factor in chemical transformation processes (see refs 171, 175, and 200). Table 1.9a summarizes the lifetime of aerosols as a function of their size. Sulfate aerosols collected during the summer have the size of Aitken nuclei (radius \leq 0.1 μ m) and are smaller than sulfate aerosols collected during the winter. 203 The size of the aerosols depends on the relative humidity²⁰⁴⁻²⁰⁷ as well as on the acid content (see further Discus sion).²⁰⁷ Chloride and nitrate aerosols are in general bigger than other aerosols.203 The lifetime of metals in the atmosphere is summarized in Table 1.9b.

The atmospheric lifetime of water-soluble aerosols and gases depends not only on the amount of precipitation but also on the characteristics of the precipitation regime, such as duration and frequency of the precipitation events.208 Aerosols can contain water-soluble (e.g. salts) and insoluble particles (e.g. metal oxides). Aerosols of continental origin contain about 40% water soluble substances. Over 80% of the latter substances dissolve within the first 20 s after contact with water.²⁰¹ The chemical composition of aerosols in the troposphere (Table 1.10; see also e.g. refs 223 and 224) depends on the production mechanism and the chemical environment. Chloride and sulfate are the most important water-soluble compounds of atmospheric aerosols (refs 180 and 216; see also Table 1.10b). For a general review on the chemical composition of aerosols see refs 17,225, and 226, and for the chemical characterization see refs 225 and 227.

Insoluble particles function as condensation nuclei since they reduce the required supersaturation for the condensation of water droplets.²²⁸ Depending on the humidity, many insoluble particles are surrounded by a water film (Figure 1.4), which may contain many different substances. The water content of tropospheric aerosols has been estimated to be in the range of $30-50\%$ of their weight,¹⁸⁷ whereas no water has been detected on the surface of desert aerosols.230 For a review on the water content of atmospheric aerosols see ref 206.

^{*a*} Emissions from industrial processes and fossil fuel combustion. ^b Industrial particulate emissions. ^c Coal combustion. ^d Oil combustion. e Emissions from human activities south of 60 °S. f Estimated value. $^{\bar s}$ Area of Cologne. h Area of Duisburg. i Former German Democratic Republic. ^{*j*} Value based on daily emission rates; oil contains 1% sulfur. ^{*}Fos area; industrial area at the Mediterranean coast with refineries, power stations, cement works, iron and steel mills. ['] Value based on daily emission rates by
a 2000 MW lignite-fired power plant. Metropolitan areas of Chicago, Milwaukee, and nort expected to exceed the highest levels given for this source. Values based on daily fine particles $(d \le 10 \ \mu m)$ emissions in the South Coast Air Basin. *p* Sudbury area, Ontario, Canada. * Average value of three ore smelters (Copper Cliff, Falconbridge, Inco Iron Ore Recovery); based on daily emission rates.

Transition Metal-Catalyzed Oxidation of Sulfur(lV) Oxides

Table 1.7. Atmospheric Iron and Manganese Concentrations (see also Figure 1.2.b; for further information see e.g. refs 154-161)

Fe $(\mu g L^{-1})$	\mathbf{Mn} (<i>ug</i> \mathbf{L}^{-1})	remarks	ref
$(0.9\text{--}1.2)\times10^{\text{--}3\ a}$		atmosphere	162
6.6	0.26	atmosphere ^b	163
100	1.8	$\texttt{atmosphere}^{c}$	164
$(0.6-1.8) \times 10^{-3}$	$(0.2-1.7) \times 10^{-4}$	urban air	165
	$(0.01-10) \times 10^{-3}$	urban air $\scriptstyle d$	166
1.6×10^{-3}	7.0×10^{-5}	urban air d,e	145
1.9×10^{-3}	1.2×10^{-4}	urban air df	145
$(1.1-2.1) \times 10^{-3}$		urban air	167
$(0.2-0.5) \times 10^{-3}$		rural air	167
	0.2×10^{-3}	rural air d	166
$15 - 131$	$3 - 20$	rain water ^e	168
35.4	2.9	rain water	169
$22 - 55$	$5.5 - 11.5$	rain water ^e	63
$50 - 100$		rain water [^]	170
$20 - 66$		rain water ^h	171
		rain water ^{h,i}	172
88	3.8	rain water ^{hj}	173
200	8.1	rain water ^{h,k}	174
212	14.3	rain water ^e	175
230	12	rain water	176
1300	28	rain water	177
24	27.5	rain water ^m	63
$12 - 109$	$13 - 37.5$	snow water ^s	63
140	6.4	snow water ^e	176
203	5.3	snow water ⁿ	63
14.3	3.2	snow water ^m	63
$0.08 - 10.7$	$0.003 - 0.52$	fog water ^d	178
$0.02 - 1.4$	$0.003 - 1.3$	fog water ^d	156
$90 - 2100$	$18 - 160$	fog water ^d	179
$17 - 5100$	$0 - 420$	fog water ^o	180
547-12900	$17 - 170$	fog water ^o	181
4820	2320	fog water ^p	182
$0.02 - 6.8$		cloud water ^d	183
99	35.1	cloud water ^{h,q}	184

As particulate ferric oxide. ^b Greenland. ^c Bermudas, 1974. USA. ^{*e*} Chicago, 1964. *f* Milwaukee, 1964. *^g* Germany. ^{*h*} Great Britain. *Wean value of samples collected in both urban and* rural areas of South Wales and northern England.^j Great Britain, North Sea coastal site, average value **1987-1988.** $*$ Rural area. *Nigeria* (Africa; May-October). m Poland. n Norway. ^{*o*} Switzerland. *P* Japan, maximum value 1991/92. ^{*a*} Great Dun Fell, May **1993.**

The acidity of aerosols depends on the amount of adsorbed water and lies supposedly in the pH range 1-3. In the case of low humidity the pH value can be below l.231 Atmospheric dusts collected during the summer, normally react neutral, whereas samples collected during the winter show acidic reactions.232 The fine fraction $(d \leq 2.5 \mu m)$ of aerosols collected in Houston, TX, exhibited an acidic reaction, whereas the coarse fraction $(d = 2.5-15 \,\mu\text{m})$ behaved basic.²²² This difference was attributed to the fact that in the fine particles SO_4^2 ⁻ was the major compound, whereas crustal matter, e.g. CaC03, was the major component in the coarse fraction (see Table $1.10c$).

With respect to the catalytic activity of aerosols in different redox processes (see section 3.4), the relative humidity and the water film around the aerosol play important roles. The amount of $SO₂$ adsorbed on particles increases with increasing humidity. $232,233$ In the presence of sea salt aerosols an increase in the SO2 oxidation rate by a factor of 10 has been observed when the relative humidity is increased from 40% to **80%.216** Catalytic activity of manganese(I1) sulfate aerosols has only been found at a relative humidity higher than 70% .²³⁴ Matteson et al.²³⁵ report a **Table 1.8**

(a) Particle Concentration in Los Angeles (Temperature and Relative Humidity: **22.0** "C and **23.6%** on April **7, 1983, 29.8** "C and **50.5%** on Aug **25, 1983)lg4**

compound	clean day April 7, 1983 $(\mu g \text{ m}^{-3})$	smog Aug 25, 1983 (μ g m ⁻³)
$(NH_4)_2SO_2$	3.54	14.90
NH ₄ NO ₃	1.23	1.79
NaNO ₃		12.80
Al ₂ O ₃	2.82	9.34
SiO ₂	4.53	15.54
Fe ₂ O ₃	0.91	4.58
PbO	0.06	0.72

(b) Trace Species Concentrations in the Clean Troposphere and in Polluted Urban Air (Taken from Ref **16)**

Table 1.9

limiting value of **95%** relative humidity for catalytic activity.

In the case of water-soluble particles the oxidation rate strongly increases as the catalyst particles change from the solid form into the droplet form (see Table 1.11) at high relative humidity.^{238,239} When the relative humidity lies over the deliquescence point of these particles, they are covered by a saturated salt solution. This solution is characterized by a nonhomogeneous mixture of dissolved substances. Thus, the $SO₂$ oxidation process is distributed nonhomogeneously over the whole droplet volume.²³⁹

In view of the possible catalytic activity of aerosols, their surface is an important parameter. **A** comparison of the surfaces of atmospheric aerosols and rain drops indicates that the surface area **of** aerosols $[(0.2-2) \times 10^{-6}$ cm² (cm³ of air)⁻¹] is smaller than the surface area of raindrops $[(1-10) \times 10^{-6} \text{ cm}^2 (\text{cm}^3$ of air $)^{-1}$].¹⁸⁷ The surface area of most of the fly ashes is in the range of $1-30$ m² g⁻¹,²⁴⁰ which limits the

Table 1.10. Chemical Composition of Atmospheric Aerosols from Different Origins (a) Insoluble Compounds

^a Mount St. Helen, WA.^{209 b} Mountain station near Garmisch, Germany; data taken from ref 17. ^c Jaipur, India.²¹⁰ Values in brackets: Mt. Carmel, Israel, dry fall dust, Spring 1990.^{211 d} Tees-side, northeast coastal area of England. Values in brackets: West Covina, greater Los Angeles Area, CA; data taken from ref 17. *e Cupola dust from iron production in the United Kingdom*; average values for particles with $d > 63 \mu m$ $(d < 63 \mu m)$; values for $Fe₂O₃$ are sum of $Fe₂O₃ + FeO$; data according to ref 212. *f* Dust from electric arc process. Values in brackets: dust from basic oxygen process.213 *g* Fly ash from combustion of Victorian brown coals, Australia; average value of four samples. Data in brackets are from combustion of New South Wales bituminous coals, Australia; average values of four samples; data according to ref 214; compare also with ref 215. ^h Reference 213. ⁱ Central Atlantic; data taken from ref 17. Values in brackets: sea-salt particles, Red Sea, Eilat, Israel, data according to ref 216. *j* Central Amazon basin, South America; dry season. Values in brackets are for the wet season.²¹⁷ Arctic summer troposphere (free troposphere). Values in brackets are for boundary layer.²¹⁸ / Mt. Carmel, Israel, dry fall dust, s road dust.²¹⁹ ^{*m*} Composite of gasoline- and diesel-powered highway vehicle exhaust, plus tire and brake dust.¹⁴⁷ ^{*n*} Reference 220. Values in brackets: average value of five samples.²²¹ ^{*o*} Houston, **TX.²²²** *p* **Same value for day and night samples. ⁴ Phoenix, AZ,** Winter time haze, January 1983.⁷⁴ Southeast Chicago, IL. Particles less than 10 μ m diameter.¹⁸⁶^s Bondville, IL, rural area; particles less than 10 μ m diameter.¹⁸⁶ Composite of gasoline- and diesel-powered highway vehicle exhaust, plus tire and brake

adsorption capacity of gases. Iron oxide, $Fe₂O₃$, for example has an adsorption capacity (see also Table 3.12) for SO_2 of 62.6 μ g (mg of Fe_2O_3)⁻¹, whereby only 35% of the surface area is covered.241 **A** possible explanation for this low value is the occupation of potentially active adsorption sites by organic molecules (see ref 242). Extraction of atmospheric dust with benzene resulted in a 2-fold increase in the amount of SO_2 adsorbed.²³² Rani et al.²¹⁰ reported no influence of the particle size on the catalytic activity of atmospheric dusts.

The adsorption of $SO₂$ on particles occurs in two steps. Only the first one, the fast adsorption until equilibrium is reached, is believed to be of environmental significance. The second step is a slower further uptake of $SO₂$.²³⁹ For a detailed discussion on the uptake of atmospheric gases into water droplets (Table 1.12) see ref 244-246.

Table 1.11. Deliquescence Points of Some Salts as Function of the Relative Humidity

salt	deliquescence point at % relative humidity	ref
CuCl ₂	72	236
CuSO ₄	98	236
$_{\rm FeCl_3}$	77	237
$_{\rm{MgCl_2}}$	33	17
MgSO ₄	88	17
$\rm MnCl_2$	40	237
MnCl ₂	57	236
MnSO4	86	236
NaCl	76	229
NaNO ₃	75	17
Na ₂ SO ₃	85	229
Na2SO4	86	237
Na2SO4	91	229
NH4Cl	77	237
NH4Cl	80.5	229
$(\mathrm{NH_4})_2\mathrm{SO}_4$	81	237

Table 1.12. Uptake of Some Gases by Fog Droplets²⁴³

1.3. Distribution and Lifetime of Trace Compounds

The spatial and time-dependent distribution of trace gases emitted into the atmosphere depend on transformation and transportation processes as well as atmospheric conditions (e.g. concentrations, humidity, cloud distribution, sun light, etc.). The atmospheric lifetime τ of a trace compound can be described by its chemical half-life τ_c (reactivity, see Table 1.13) and the deposition time τ_d (transportation processes, meteorological conditions). For the estimation of τ , several reactions of the studied compounds are usually compared with each other. In the case of SO_2 the estimated value of τ is 3 days (lower troposphere, day light conditions) if $SO₂$ reacts only with OH radicals; τ increases to a value of about 10^5 days (lower troposphere, day light conditions) if $SO₂$ reacts only with ozone.248 For a summary concerning τ for SO₂ see ref 17, pp 512-513. For NO_x a value of $\tau = 3-4$ days in the troposphere is reported by Bónis et al.⁶¹ Lammel²³ reported the following τ values for NO, compounds in the surface near atmosphere: $NO₂$, 6-48 h; HNO₂, N₂O₅, and NO₃ < 1 night; HNO₃, $1-10$ days; N₂O, 100 years. In the stratosphere τ is often several times higher than in the troposphere because of the absence of effective sinks.45 The atmospheric lifetime τ is a main parameter for the atmospheric relevance of chemical processes. Reactions with a half-life $t_{1/2}$ > τ are only of minor

relevance in comparison to processes with $t_{1/2} \leq \tau$ or $t_{1/2} \ll \tau$.

The import or export of acid precipitation due to trace substances from or to foreign countries is a global problem (see e.g. refs 188 and 249). Approximately 10% of the overall deposited SO_2 in Europe comes from anthropogenic sources in North America.²⁵⁰ The export of $SO₂$ from the United Kingdom in 1980 to e.g. France, Denmark, USSR, and the Netherlands was 6.3, 5.7, 3.5, and 2.3%, respectively.lo1 In the Netherlands, the imported fraction of SO_2 and NO_x in acid deposition is 80 and 65%, respectively²⁵¹ (see also refs 101 and 252). Approximately 77% of the anthropogenic emitted sulfur in the atmosphere over Sweden (70%) has its origin in other countries.²⁵³ For a detailed summary on the import and export of sulfur deposition in Europe see ref 85, p 358. For an overview concerning import and export of air pollution in Europe see ref 254.

1.4. Deposition

Substances emitted into the atmosphere return, maybe chemically transformed, to the earth surface via deposition processes.47~255-258 These processes can be divided into dry and wet deposition.^{257,258} Dry deposition is the transfer of trace substances from the atmosphere to the earth surface without participation of a liquid phase. Wet deposition occurs via rain, dew, fog, and snow. For a literature survey concerning the deposition of particles, SO_2 , and O_3 , see ref 255. For a review of deposition monitoring methods, see ref 259. The term acid rain (see section 1.5) is often used as an overall expression for the wet deposition process.

The fractions of dry and wet deposition vary with the trace substances, the water solubility, the air pollution and the source distance. The wet deposition dominates over the dry deposition for SO_4^2 , NO_3^- , and C1-, whereas the dry deposition dominates for particles with $d > 2 \mu m$.¹⁶⁸ The deposition of manganese and iron occur mainly in the closer surroundings of the sources, viz. the industrial areas^{168,261-263} (Figure 1.5). From the emitted quantities of metals by a nickel-copper smelter in Canada, 40% of the copper, 42% of the nickel, and 52% of the iron were deposited within a radius of 60 **km,260** whereas 0.14% of the sulfur emitted by a source is deposited within a radius of 25 **km264** and less than 3% within a radius of 60 km.260 Acidic wet deposition in India is only a local phenomenon and is restricted within a 2 km distance upwind and downwind of the industrial complexes, whereas the precipitation in other areas of India is somewhat between weakly and strongly alkaline 86 (compare also with ref 261). The mechanisms of dry deposition are in nonpolluted areas a factor of 3 (manganese) or 2 (iron) less effective than in polluted areas.168 The contribution of the wet deposition increases with increasing distance from the source. $3,265$ The wet deposition of trace substances occurs in agreement with rain events, in remote areas with respect to the sources. Model calculations266 indicate that about 30% of the emitted NO_x undergoes wet deposition in the source regions, whereas *dry* deposition accounts for another 40-45%.

Table 1.13. Chemical Behavior of SO_2 and NO_x in Air^{247}

SO ₂	NO.
inactive; light absorption without chemical consequence	$NO2$ is very active; photolysis reason for anthropogenic $O3$ formation
passive; acts as weak scavenger for OH radicals (formation of H_2SO_4)	very reactive, especially through $HO_2 + NO \rightarrow OH^* + NO_2$; $NO2$ acts as radical sink, e.g. $OH+ + NO2 \rightarrow HNO3$
no reaction	fast reaction with NO, slower with NO_2 ; formation of N_2O_5
very important sink	important, but not well investigated; occurs probably via N_2O_5
important sink	less important
	H_2SO_4 and $SO_4{}^{2-}$ in aerosols and rain $HNO_3(g)$, $NO_3{}^-$ in aerosols and rain

Figure 1.5. Amount of deposited metals as function of source distance: (a) Heavy industrialized city of Hamilton, Ontario (Canada); three rain samples, summer 1985 (according to ref 263); (b) Zn/Cu smelter in Flin Flon, Manitoba (Canada); snow samples, average values of data from 1981 to 1984 (after ref 262). See also ref 261.

For the import or export of acid precipitation see section 1.3.

The deposition quantities of some atmospheric trace substances are summarized in Table 1.14.
Model calculations¹⁹⁹ indicate that fine particles (*d* \leq 2.5 μ m; see section 1.2) are responsible for only a small fraction (0.06% for particle mass) of the total dry deposition **flux.**

The determination of the deposition velocity (see Table 1.15) as well as the amount deposited is subjected to large errors. The uncertainty (in each case for a monitor period of 14 days) for manganese has been determined to be $\pm 6\%$, whereas the uncertainty for iron is $\pm 61\%$.¹⁶⁸ The uncertainty for the wet deposition of NO_x has been determined to be $\pm 50\%$.⁶¹ For the deposition of NO₃⁻ over North America, an error of $\pm 20\%$ is cited.³ The dry deposition of $SO₂$ is one of the most uncertain parameters in the atmospheric sulfur cycle^{50,279} since the dry $\frac{1}{2}$ into the cloud water droplets.

deposition is strongly influenced by atmospheric conditions. Whereas the wet deposition of $SO₂$ is nearly constant over the entire year, the amount of the dry deposited SO_2 is double in winter than in summer.⁶⁸ The fraction of the dry and wet depositions for the atmospheric SO_2 sinks is 45 and 11%, respectively.280 In polluted areas the dry deposition of sulfur $(SO_2$ and SO_4^2) is the dominant sink compared to the wet deposition.168

Chemical transformation of the trace substances also occurs during the deposition process. Thus, the deposition velocity (Table 1.15) is an important parameter for the chemical transformation during the deposition process. It should also be mentioned, that the deposition velocity depends on the surface over which it is measured.^{278,281}

1.5. Acid Rain

The scientific interest in wet deposition has increased in terms of "acid rain" as a result of ecological and economical damages (e.g. damages to forests, fish $populations, buildings).^{13,282-290} Furthermore, atmo$ spheric acidity can cause health problems (see ref 291 for an overview). The term "acid rain" was probably used for the first time in the scientific literature in $1842.^{b,292}$ The actual meaning of acid rain is the washout^c of trace substances by rain events, although fog, dew, and snow are also forms of wet deposition (see section 1.4) and also result in the acidification of waters and soils, and the damage of buildings. **A** comparison of the relative magnitude of frost, dew, and fogs as compared to rainfall, indicate that the daily moisture deposition of fog, dew, and frost is around 45%, 0.6% and 0.2%, respectively, compared to that of rain.294 Acid rain is a global problem and has been recognized in all parts of the world.²⁹⁵ For a detailed literature survey on acid rain problems and its effects on the environment from 1980 to 1984 see ref 296, from 1984 to 1988 see ref 297, and from 1988 to 1991 see ref 298. For a historical review see refs 299-301.

Dry acid deposition is generally not noticed very often in atmospheric studies, but it is also responsible for the effects caused by the overall acid rain phenomenon. For example, in the Netherlands 70% of the overall acid deposition is caused by dry acid

^bThe text by Poggendorff²⁹² was based on a letter from Pilla²⁹³ in which the acidification of rain by emissions of the volcano Vesuv was described.

CWASHOUT CWASHOUT THE CONSECT THE CONSECT THE CONSECT THE CONSECT THE CONSECT INCORPORATION INCORPORATION INCORPORATION OF A failing of water droplets. Rainout represents all processes within a falling of which droplets. Rainout represents all processes with a cloud that result in the absorption or incorporation of trace compounds

Table 1.14. Denosited Amount of Some Trace Substances

^a For a compilation of deposited amounts of other metals see ref 268. ^b Particulate SO₄²⁻. ^c Calculated as S. ^d Particulate NO₃⁻. **^e**Calculated as N. *f* HN03.

deposition.251 Thus, it would be more appropriate to substitute the term "acid rain" by "acid deposition". In the following we will focus only on wet deposition.

The pH value of rain is in the range of **4.5-5.6** when the natural *C02* content and the sulfur cycle are taken into consideration.^{86,302-306} According to Khemani⁸⁶ the term "acid rain" has come to mean rainfall with pH less than **5.65.** Delmas and Gravenhorst305 discussed in their review article that the pH value of **5.6** cannot be taken as natural reference pH of rain water because atmospheric acid and basic trace constituents can significantly change this value. In several areas in Europe and North America the pH is around **4-4.5,10J761307** and **49.5%** of rain water samples collected in an urban area in Germany in **1974** had a pH between **4.1** and **4.4,** whereas for **27.5%** of the samples the pH was between **3.7** and **4.0.176** The pH of **72%** of the samples collected in a

rural area in Germany during the same time was between **4.3** and **4.5.176** Of rain and snow samples collected in **1993** in Germany, Norway, and Poland **30%** had a pH lower than **5.6,** with a lowest value of **4.6** (snow sample from Germany) and a highest value of **7.2** (snow sample from Poland).62 In India the overall probability for the occurrence of acid rain (pH < **5.6)** is about **2%** (see further Discussion).308 In Scandinavia and Northeastern America a strong increase in the acidity of precipitation was observed between **1955** and **1970.302** Between **1974** and **1984** the pH of precipitation collected at several places in India exhibited a decreasing trend toward the acidic range.308 The pH of precipitation water collected in Agra and Dehli, two cities in India that developed industrially to a great extend, during the summer monsoon season decreased from **9.1** and **7.0 (1963/ 65)** to **6.3** and **6.1 (1984),** respectively.309 In cloud

water collected over Hawaii the pH was found to be between **4.2** and 4.7.310 pH values of fog water collected in Los Angeles and in Switzerland were between **2.2-5.8** and 2.9-7.1, **respectively.154J80,311,312** Rain water with alkaline pH (pH > *6)* has been observed for example in India.86,313 **A** shift of pH toward the alkaline region can be due to the incorporation of alkaline soil particles released from crustal sources. Thus, precipitation acidity is a function of the contents of both acids and bases (Figure 1.6). Any attempt to understand the processes causing acid precipitation must deal with the acid neutralization capacity of alkaline materials.^{86,314,315} On the basis of model calculations, Gatz et al.³¹⁴ reported that alkaline compounds (e.g. $NH₄$, Ca, Mg, K, Na) buffer between **25** and **50%** of the potential acids in precipitation in the United States. According to Pilinis et al.,²⁰⁶ the molar ratio of the sum of NH_3 and NaCl to H_2SO_4 is of fundamental importance in determining whether unneutralized

Figure 1.6. pH range predicted for background precipitation depending on the relative concentrations of various atmospheric trace constituents.305

Table 1.16. Concentrations of Sulfuric and Nitric Acid in Precipitation and Atmospheric Water Droplets (see also Figure 1.2.a)

area	sulfuric acid $(\mu \text{mol L}^{-1})$	nitric acid $(\mu \text{mol } L^{-1})$	pН	remarks	ref
subarctic tundra near Bethel, AK	4.3 ^a	3.7^{b}	4.69	precipitation events from July 11 to Aug 11, 1988 218	
Central Amazon region (Brazil, South America)	4.5^a	5.5 ^b	4.6	rain water during July-Aug 1985; dry season	318
La Paragua, Venezuela	2.5^a	3.2 ^b	4.7	rain water during Oct-Nov 1985; remote area; nonburning period	319
Dimonika, Congo, Africa	5.3 ^a	8.6 ^b	4.74	precipitation events from Nov 1986 to Sept 1987	320
Dhahran, Saudi Arabia	116.5°	143.7 ^b	5.48	rain water and bulk deposition $(rain +$ dry fallout); March 1987 to March 1988	321
Mt. Carmel, Israel	48^a	37 ^b	4.33	precipitation water; Jan 5, 1992	211
Mt. Carmel, Israel	55^a	59 ^b	6.35	bulk precipitation; Jan 5, 1992	211
Mt. Carmel, Israel	101 ^a	150 ^b	7.32	precipitation water; March 4, 1992	211
Mt. Carmel, Israel	96^a	123	7.06	bulk precipitation; March 4, 1992	211
Everglades National Park, FL	8.0 ^a	10.5 ^b	5.17	precipitation events 1989	306
Ithaca, NY	57.1	44.4	3.84	rain water, July 1975	322
Long Island, NY	24.7^a	27.9^b	4.29	rain $+$ snow water; Oct 1983 to June 1985	323
Clingmans Peak, NC	11^a	8.8^{b}	4.55	rain water; Aug-Sept 1986	324
Northeastern USA	45.8^a	38.7^{b}	4.08	precipitation water; June 1972 to Aug 1973	325
Minnesota USA	23.4^a	27 ^b	4.83	rain water; summer 1982	326
Warren, OH (Northeastern USA)	33^a	31 ^b		rain water (winter precipitation), Dec 1981 to April 1985	327
Warren, OH (Northeastern USA)	13 ^a	41 ^b		snow; Dec 1981 to Apr 1985	327
Detroit, MI (Northeastern USA)	121^a	166 ^b	6.5	dew water; June 1981 to July 1983	328
Westwood (Los Angeles), CA	10.7^a	16.6^{b}	4.81	rain water; Sept 1985 to Aug 1991	329
Westwood (Los Angeles), CA	16.4^a	34.0 ^b	4.97	rain water; Jan-March 1989	329
Pasadena, CA (Southeastern California)	$31 - 190^a$	$130 - 930b$		4.74-5.25 fog water; Nov 11, 1981	154
Pasadena, CA (Southern California)	$240-472^a$			$1220 - 3520$ ^b 2.92-4.85 fog water; Nov 23, 1981	154
Pasadena, CA (Southern California)	2530	1200	2.25	fog water, Jan $17, 1982$	154
Alberta, Canada	21.6^a	15.8^{b}	5.53	precipitation events 1980-1984	330
USSR	28.1^a	3.3 ^b	5.3	rain water	108
Kitakyushu City, Japan	42.1ª	28.1^{b}	4.93	bulk precipitation; Jan 1988 to Dec 1990	331
Mt. Oyama, Japan	$5.5 - 698^a$			$7-3036$ ^b 3.02-6.59 fog water; 1991-1992	182
Mt. Oyama, Japan	$2.0 - 145.5^{\circ}$	$0 - 329b$		$3.77 - 6.55$ rain water; $1991 - 1992$	182
Yokohama, Japan	$9.5 - 225.5^a$	$8 - 438^b$		3.49-5.56 rain water; 1991-1992	182
Yokohama, Japan	30.7 ^a	32.5^{b}	4.4	rain water; May-Nov 1985	332
Southern China	223.5^a	10.0 ^b		rain water; urban area, 1984	270
Southern China	114.3^a	10.1 ^b		rain water; rural area, 1984	270
Trivandrum, India	17.8^a	15.8 ^b	5.30	rain water; coastal area	86
Kalyan, India	54.1 ^a	31.0 ^b	5.70	rain water; industrial area	86
Dehli, India	28.4^a	41.0 ^b	6.10	rain water; urban area	86
Dehli, India	45.6^a	187.9^{b}	6.91	fog water; urban area	86
Dehli, India	69 ^a	80 ^b	7.2	fog water; 1986	309
Pune, India	18.5^a	7.7°	6.30	rain water; urban area	86
Pune, India	15.6^a	29.0 ^b	6.90	cloud water	86
Netherlands	$18 - 400^a$	$8 - 860b$	$3.2 - 5.5$	cloud water; June 1982	333
Darmstadt, Germany	30.5^a	23.4^b	4.43	rain water; Feb 1989	169
Great Dun Fell, UK	168.7^a	102.6^{b}		cloud water; April-May 1993	334
Lancaster, UK (NW England)	44.5^a	28^b		rain water; rural area, 1979–1981	335
Zürich, Switzerland	360 ^a	698 ^b	4.6	fog water; Sept 1986 to Dec 1987	180
Zürich, Switzerland	$320 - 1340^a$	$310 - 2130^{\circ}$		$3.28 - 5.15$ fog water; Nov 27-29, 1991	181
Zürich, Switzerland	$40 - 190^a$	$60 - 80b$		$3.78 - 5.36$ fog water; Feb $12 - 13$, 1992	181
Zürich, Switzerland	$120 - 290^a$	$120 - 260^{\circ}$		$5.82 - 6.17$ fog water; Nov $5 - 6$, 1992	181
Hrádek u Pacova, Czechoslovakia	52.2^a	44.8 ^b	4.37	precipitation water; rural area, 1976-1984	336
Patros, Greece	38^a	57 ^b		$4.12 - 8.76$ precipitation water; Oct 1985 to April 1986	337
^a Sulfate. ^b Nitrate.					

 $H₂SO₄$ will exist in the particulate phase. If this ratio is less than 2, HSO_4^- and H_2SO_4 (1) may be present in the aerosol phase, whereas for values larger than 2, $H₂SO₄$ is completely neutralized. Long-term trends in base cations in precipitation have exhibited a steep decline over the past 10 to 26 years.³¹⁶ For analytical problems related to the determination of atmospheric acidity see ref 317.

The most important inorganic acidic substances in the atmosphere are H_2SO_4 and HNO_3 (Table 1.16).^d As organic acids only formic and acetic acid are

important (Table 1.17). Since the beginning of the 1980s an increase in the concentrations of the oxidation products $SO_4{}^{2-}$ and $NO_3{}^-$ has been observed (see also Table 1.4). In Harwell, England, for instance, the sulfate concentration in aerosols increased by 50% from 1957 to 1974.Io3 From 1890 to 1970 the deposited amount of NO₃⁻ increased nearly by a factor of 10 in the eastern parts of the United

dFor historical values of the inorganic composition of precipitation water see, e.g. refs 338 and **339.**

Table 1.17. Concentrations of Formic and Acetic Acid in Precipitation and Atmospheric Water Droplets (for a comparison of ion chromatographic methods for the determination of organic acids in precipitation see refs 340 and 341)

area	formic acid $(\mu \text{mol L}^{-1})$	acetic acid $(\mu \text{mol} \text{ } L^{-1})$	рH	remarks	ref
Subarctic Tundra near Bethel, AK	7.9 ^a	7.0 ^b	4.69	precipitation events from July 11 to Aug 11, 1988	218
Dayalbagh, Agra, India	7.7 ^a	5.62^{b}	6.79	wet precipitation water $(Aug-Sept 1991)$	313
Hari Parvat, Agra, India	2.45^a	11.62^{b}	6.69	wet precipitation water (Aug–Sept 1991)	313
Taj Mahal, Agra, India	3.6 ^a	4.91^{b}	7.22	wet precipitation water (Aug-Sept 1991)	313
Udyog, Agra, India	1.78^{a}	6.43^{b}	7.15	wet precipitation water $(Aug–Sept 1991)$	313
Dimonika, Congo, Africa	6.6 ^a	3.0 ^b	4.74	wet precipitation from Nov. 1986 to Nov. 1987	320
Dimonika, Congo, Africa	6.3 ^a	3.0 ^b	4.75	wet precipitation during dry season	320
Dimonika, Congo, Africa	10.6^a	3.3 ^b	4.58	wet precipitation during wet season	320
Central Amazon region (Brazil, South America)	17.9^{a}	11.4°	4.6	rain water during July-Aug 1985; dry season	342
La Paragua, Venezuela	8.4 ^a	4.5^{b}	4.7	rain water during Oct-Nov 1985; remote area; nonburning season	319
La Esperanza, Venezuela	4.4	5.5	4.1	rain water from Nov. 1988 to Nov. 1989; rural site	318
Minnesota	not determined	3.87^{b}	4.83	rain water; summer 1982	326
Westwood (Los Angeles), CA	12.4°	4.1^{b}	4.81	rain water; Sept 1985 to Aug 1991	329
Charlottesville, VA	13.5^a	5.2 ^b	4.17	precipitation events from April 16 to Oct 1, 1983	343
Charlottesville, VA	12.7^a	6.0 ^b	4.47	precipitation events from Nov 1983 to Dec 1984	344
Wilmington, NC	2.5	1.9	4.66	rain water; average value for nongrowing seasons $1987 - 1990$	345
Wilmington, NC	9.4	4.3	4.44	rain water; average value for growing seasons	345
Ithaca, NY	0.4	2.1	3.84	rain water; July 1975	322
Darmstadt, Germany	5.9 ^a	5.2 ^b	4.43	rain water; Feb 1989	169
Central Germany	53.8	50.7	5.54c	cloud water; Sept 1988	346
Zürich, Switzerland	$21.7 - 223.7^{\circ}$	$56.2 - 831.0b$	$3.6 - 5.5$	fog water; Nov 1987	347
Zürich, Switzerland	$34.9 - 134.0^a$	$69.1 - 414.6b$	$3.28 - 5.15$	fog water; Nov $27-29$, 1991	181
Zürich, Switzerland	$7.7 - 16.8^a$	$14.8 - 61.9b$	$3.78 - 5.36$	fog water; Feb $12-13$, 1992	181
Zürich, Switzerland	$17.0 - 39.1^{\circ}$	$30.8 - 42.9b$	$5.82 - 6.17$	fog water; Nov $5-6$, 1992	181
Po Valley, Italy	$9.5 - 49$	$12.5 - 91.5$	$4.0 - 4.94$	fog water; Nov 1985	348
Great Dun Fell, UK	14.65	7.67		cloud water; April, May 1991	334
Mace Head, Ireland	3.16	0.38	5.48c	dew water; Sept 1989	346

^a Formate. ^b Acetate. ^c Calculated value.

States.349 **A** direct correlation between the S04' concentration in precipitation and anthropogenic SO_2 emissions has been found in Sweden. The increase in SO_4^2 ⁻ by 50% (1954-1970) and the decrease by **25%** (1970-1980) can be correlated very well with the SO_2 emissions during the same time.³⁵⁰ A similar correlation was observed in the United States between SO_2 and NO_x emissions and the acidity of rain and the deposited amount of SO_4^2 ⁻ and NO_3^- , In contrast, Shin and Carmichael³⁵⁴ found that only the dry deposition of SO_4^{2-} and NO_3^- is proportional to the SO_2 and NO_x emissions, respectively, whereas the liquid phase production of SO_4^{2-} is not proportional to SO_2 and NO_x emissions.

The oxidation products of the sulfidic sulfur species (see Figure 1.1) can also contribute to the acidity of rain. For example, the oxidation products of dimethyl sulfide have contributed around 40% to the rain acidity at Amsterdam Island (Indian Ocean).²¹ Tanaka et al.332 calculated that the contribution of $sulfur(IV)$ oxidation to the decrease of pH in rain water is in the range of *6-67%.* The relative contribution of acidic compounds to the acidity of precipitatione (Table 1.18) depends on location and

^a HCl, H₃PO₄, or organic acids. ^b Organic acids. ^c See footnote *e* (text). ^d Ithaca, NY, Oct 1975. ^e Average value 1964—
1979. *f* Summer. *§* Winter. ^h HCl. ⁱ HCOOH + CH₃COOH. *^j*Mainly acetate; contribution of *S(W)* to free acidity; 7.5%. $*$ HCOOH. $*$ H₃COOH. $*$ Savannah region. $*$ Dry season, July-Aug 1985. ^o Average value Nov 1986 to Sept 1987. ^p Yearly average value. 9 Average value 1980-1984. THCOOH, in the overall wet season. ⁸ HCOOH, in the monsoonal periods.

eLikens302 points out that by the determination of the contribution of acidic compounds to the acidity of precipitation the contribution of carbonic acid has sometimes not taken into account, since carbonic acid dissociates at pH > **5,** and influences than the H+ concentration. If the contribution of carbonic acid is taken into account, the percentage contribution of the other compounds decreases (values in brackets in Table **1.18).**

Transition Metal-Catalyzed Oxidation of Sulfur(lV) **Oxides**

time, but is nearly similar in the eastern parts of the United States and in Europe.³⁶² The contribution of organic acids can dominate over sulfuric and nitric acid in tropical and equatorial areas (Table 1.18). Formic and acetic acid have also been found in the atmosphere and in the precipitation of industrialized $~\overline{\text{countries}}^{313,345,357,363-368}$ (Table 1.17; for a general review on organic compounds in rain water see ref 369). Natural sources for these organic acids or their precursors are primarily plants, $320,370,371$ but also anthropogenic activities including emission by traffic should be taken into account.^{313,363,364,368,372} The concentration of these two organic acids in precipitation (Table 1.17) varies with the season and the geographical origin. During the growing season of plants (spring, summer) a higher concentration in rain water has sometimes been observed compared to the nongrowing season (autumn, winter). $344,345$ In rain water collected in the Venezuelean savannah region higher formic and acetic acid concentrations were observed during the burnig periods.^{319,373} Rain water from continentia1 storm systems contains higher concentrations of formic and acetic acid than from maritime storms.345 For the influence of meteorological conditions on sulfate and nitrate concentrations in rain water see e.g. ref 374.

As a result of the change in the emitted quantities of pollutants (see Table 1.4) there is a change in the contribution of inorganic acid substances observable in the precipitation. In the northeastern parts of the United States the importance of sulfuric acid to the acidity in rain water has decreased during the period 1964-1979 by 30% relative to nitric acid, whereas nitric acid increased by **50%** relative to sulfuric acid.³⁵⁵ The relative contribution of $SO_4{}^{2-}$ to the acidity of rain in New York decreased from 78 to 65% (1955–1973), whereas the contribution of NO_3^- increased by 8 up to 30% in the same time.³²⁵ The contribution of sulfate to the ambient acidity of precipitation at Hubbard Brook, NH, dropped from 83% in 1964-1965 to 66% in 1973-1974 but the nitrate contribution increased from 15% to 30%.302 At one station in the Western part of the United States the concentration of $NO₃⁻$ has more than doubled within 3 years (1975-1978).375 Rain water in Chembur, a highly industrialized area near Bombay, India, which was reported acidic from 1974 to 1980, turned alkaline in 1990. This fact is ascribed to the declining SO_2 and NO_x emission trends (see section 1.1).⁸⁶

The maximum contributions of H_2SO_4 and HNO_3 to acid precipitation during summer in the United States are 73 and 31%, respectively, and during winter 59 and 61%, respectively.^{265,355} The higher contribution of HN03 during the winter is likely due to the higher emission rates of NO_x , e.g. due to combustion processes for heating. Measurements of NO_x concentrations in the air of rural areas³⁷⁶ as well as of cities⁷⁷ indicate a higher NO_x concentration during winter. In addition, the atmospheric SO_2 concentration in Europe during the winter is more than two times higher than during the summer (see also Table 1.3). Of course, the conversion rate of SO_2 to SO_4^2 ⁻ is a factor of 2 higher during the summer than during the winter. 68 On the contrary, in the remote area of Amsterdam Island (Indian Ocean) the

Table 2.1. Solubility of Some Gases in Water $(p_{gas} = 1)$ **atm)**

		solubility in water (g L^{-1}) at				
gas	0 °C	10 °C	20 °C	25 °C		
O_2^a	0.0701 ^b	0.0545^{b}	0.0443 ^b	0.0406 ^b		
O ₃	1.051c	0.802c	0.610c			
SO ₂	228 ^d	153.9^{e}	106.6^e	94.1 ^r		
$\rm N_2$	0.0296e		0.0194e	0.0175'		
NΟ	0.0983	0.0770 ^{ϵ}	0.0630 ^s	0.0577s		
$\rm N_2O$	2.537s	1.7285	1.237 ^g	1.0658		
CO ₂	3.35'		1.69'	1.45^{6}		

^a See also section 2.3.1. ^b Reference 378. \textdegree Reference 379. Reference 380. **e** Reference 381. f Reference 382. **g** Reference 383.

atmospheric $SO₂$ concentration in summer is about 6 times higher than in winter (see Table 1.3).66

According to Radojevic and Clarke,¹⁷¹ the oxidation process of SO_2 in rain water is too slow in order to produce significant amounts of SO_4^{2-} during the lifetime of a rain drop (approximately 2 min³⁷⁷). According to their results 45.5 h are needed to reach the SO_4^2 ⁻ concentrations found in rain water samples (average oxidation rate of 1.34% h⁻¹, LWC = 0.5 g m^{-3} , $T = 25$ °C) (see also ref 172, p 145). Thus, the reason for high $SO_4{}^{2-}$ concentrations in rain water is according to Radojevic and Clarke¹⁷¹ oxidation processes that occur in cloud or fog droplets. A similar conclusion was reached by Tsunogai,²⁰⁰ who suggested that the sulfate in rain water does not come from the immediate dissolution of $SO₂$ into falling rain drops, but may come from sulfate in aerosols which has been formed by oxidation in the air or in the cloud droplets prior to incorporation into the rain drops (see also ref 175). Betz¹⁷⁶ calculated that 90% of the sulfate in rain water is due to rainout processes in cloud elements.

2. Aqueous Phase Chemistry

2.1. Sulfur Oxides

In view of the transition metal-catalyzed oxidation of sulfur(IV) oxides a series of sulfur oxides are involved in the overall reaction process, e.g. HSO_3^- , $S_2O_6^{2-}$. Sulfate, SO_4^{2-} , and dithionate, $S_2O_6^{2-}$, are the final reaction products (see section 3.5.6) and may have an influence on the overall reaction process (see section 3.5.1). The sulfite radical, $SO_3^{\bullet-}$, the sulfate radical, SO_4 ^{*-}, the peroxomonosulfate radical, SO_5 ^{*-}, and the hydrogen peroxomonosulfate anion, $HSO₅⁻$, are intermediates. Information concerning these species is given in section 3.3.2. Depending on the pH, the hydrogen sulfite anion, HSO_3^- , or the sulfite anion, SO_3^2 , are the dominating sulfur(IV) species in atmospheric water droplets. Because of the important role of $\text{suffix}(IV)$ oxides as precursors in the acid rain formation we will only focus on these species in this section. SO_3^{2-} , SO_3^{1-} , SO_4^{2-} , SO_4^{1-} , SO_5^{2-} , SO_5^{3-} , HSO_5^{-} , HSO_5^{-} ,

2.1.1, Hydrolysis of Sulfur Dioxide

In comparison with other atmospheric gases, $SO₂$ exhibits a rather good solubility in water (Table 2.1; for further information see e.g. refs 384 and 385), which results in an enrichment of sulfur (IV) in

Figure 2.1. Uptake coefficient γ as a function of initial **droplet pH (a) gas-droplet interaction time 2 ms; (b) gasdroplet interaction time 10 ms (according to ref 386).**

atmospheric water droplets. Due to the fact that the solubility of $SO₂$ is pH dependent, an acidic atmospheric water droplet can adsorb only a small amount of SO_2 (Figure 2.1). The SO_2 uptake coefficient γ decreases with decreasing $p\bar{H}$.³⁸⁶ At $pH > 5$ the uptake of $SO₂$ into a water droplet is limited by the rate of reaction **2.1.**

SO,(g) + H,O - **HS03-** + **H+** (2.1)

During this reaction a HSO_3 ⁻ $-H^+$ surface complex may be formed, which is in equilibrium with the SO_2 in the gas phase. At pH **4** and a droplet size of **10** μ m, 30% of the dissolved sulfur(IV) is estimated to exist as the surface complex.386 For the salting-out effect (see section $2.3.2$) in the case of SO_2 see ref 384 .

Depending on pH, the sulfur(IV) species $SO_2·H_2O$ are the dominant forms in aqueous solution (eq **2.2** to **2.4,** Figure **2.2).** Equilibrium and rate constants are summarized in Tables **2.2** and **2.3,** respectively. $(pH < 1.5)$, $HSO₃⁻ (pH 1.5-6.5)$ and $SO₃²⁻ (pH > 6.5)$

The distribution and reactions of the sulfur (IV) species are further influenced by ionic strength 409 (see also Figure **2.3** and section **3.5.2).**

Figure 2.2. Distribution of sulfur(IV) oxide species as a

function of pH;
$$
[Na_2S_2O_5] = 5.0 \times 10^{-2}
$$
 M, $T = 25$ °C.³⁸⁷
\n $SO_2(g) + H_2O \rightarrow SO_2 \cdot H_2O$
\n $H = 1.23$ M atm⁻¹³⁸⁸ (2.2)

$$
H = 1.23 M \text{ atm}^{-1 \text{ sec}} \quad (2.2)
$$

SO₂ \cdot H₂O \rightarrow HSO₃⁻ + H⁺ $pK_a = 1.86^{393} \quad (2.3)$

$$
HSO_3^- \Leftrightarrow SO_3^{2-} + H^+ \qquad pK_a = 7.2^{408} \qquad (2.4)
$$

The hydrogen sulfite ion, HSO_3^- , can exist in aqueous solution in two tautomeric forms, I and $II^{399,402,405,410-412}$ According to Simon and Waldmann^{411b} and Guthrie⁴⁰⁵ the tautomeric form I is present in aqueous solution only in very small concentrations as compared to form 11. Baird and Taylor⁴¹³ suggested that the H-S bonded tautomer is the most energetically favorable. In contrast, ab initio calculations by Strömberg et al. 414 indicated that the tautomeric form I is lower in energy than the form 11. Furthermore, depending on the concentration a dimerization can also occur.^{399,404} The socalled Golding-dimer III, $(HSO_3^-)_2$, is in equilibrium with the disulfite ion IV, $S_2O_5^{2-399,401,411}$

According to Hoffmann and Calvert¹⁵³ the chemical reactivity of bisulfite can be best explained in terms of the tautomeric form I as the predominant species provided that the two tautomers are in rapid equilibrium. For example, the kinetics and mechanism of the hydrogen peroxide-bisulfite reaction (see

Table 2.2. Equilibrium Constants for Different Sulfur(IV) Species in Aqueous Solution

K	conditions	ref
	$\mathrm{SO}_2(g) + \mathrm{H}_2\mathrm{O} \blacktriangleright \mathrm{SO}_2 \text{-}\mathrm{H}_2\mathrm{O}$	
1.13 M atm $^{-1}$	$T = 25 °C$	384
1.23 M atm ⁻¹	$T=25\,\mathrm{\,^\circ C}$	388
$1.3~\mathrm{M}~\mathrm{atm}^{-1}$	$T=25\,\mathrm{^\circ C}$	389
	$SO_2 \cdot H_2 O \rightarrow HSO_3^- + H^+$	
1.39×10^{-2} M	$T = 25$ °C, $\mu = -$	390
$1.72\times10^{-2}\,\rm{M}$	$T=25$ °C, $\mu=-$	391
1.32×10^{-2} M	$T = 25 °C, \mu = 0 M$	392
1.39×10^{-2} M	$T = 25 °C, \mu \le 0.1 M$	393
$1.68\times10^{-2}\,\rm{M}$	$T=25\ {\rm ^\circ C}, \mu=0.2\ {\rm M}$	394
1.78×10^{-2} M	$T = 25$ °C, $\mu = 0.5$ M	394
2.14×10^{-2} M 2.88×10^{-2} M^a	$T = 25$ °C, $\mu = 0.5$ M $T=25$ °C, $\mu=0.5$ M	384 395
2.40×10^{-2} M^a	$T = 25$ °C, $\mu = 1.0$ M	395
$1.26\times10^{-2}\,\rm{M}$	$T = 25 °C, \mu = 1.0 M$	396
2.34×10^{-2} ${\rm M}$	$T = 25 °C, \mu = 1.0 M$	384
	$HSO_3^ \rightarrow$ SO_3^{2-} + H^+	
6.24×10^{-8} M	$T = 25$ °C, $\mu = -$	391
7.58×10^{-8} M	$T = 25$ °C, $\mu = 0$ M	384
6.42×10^{-8} M	$T = 25$ °C, $\mu = 0$ M	392
1.29×10^{-7} M	$T = 25$ °C, $\mu = 0$ M	397
1.67×10^{-7} M	$T = 25 °C, \mu = 0.2 M$	394
$2.0\times10^{-7}\,\mathrm{M}$	$T = 25$ °C, $\mu = 0.5$ M	394
$3.31\times10^{-7}\,\mathrm{M}$	$T = 25$ °C, $\mu = 0.5$ M	384
7.41×10^{-7} M ^a	$T = 25 °C, \mu = 0.5 M$	394
1.86×10^{-6} M ^b	$T = 25 °C, \mu = 0.5 M$	398
3.02×10^{-6} M ^c 3.98×10^{-7} M	$T = 25$ °C, $\mu = 0.5$ M $T = 25 °C, \mu = 1.0 M$	398 384
$5.01\times10^{-7}\,\mathrm{M}$	$T = 25 °C, \mu = 1.0 M$	396
$6.98\times10^{-7}\ \mathrm{M}^a$	$T = 25 °C, \mu = 1.0 M$	395
$1.62\times10^{-6}\,\mathrm{M}^b$	$T = 25 °C, \mu = 1.0 M$	398
2.14×10^{-6} M ^c	$T = 25 °C, \mu = 1.0 M$	398
$2.34\times10^{-6}\,\mathrm{M}^d$	$T = 25$ °C, $\mu = 1.0$ M	398
	$2HSO_3^- \rightarrow S_2O_5^{2-} + H_2O$	
$7.0\times10^{-2}\,\mathrm{M^{-1}}$	$T = 20$ °C, $\mu = -$	399
$7.6\times10^{-2}\,M^{-1}$	$T = 25 °C, \mu = 0 M$	400
$6.2\times10^{-2}\,\mathrm{M^{-1}}$	$T = 20 °C, \mu = 1.0 M$	401
$8.2\times10^{-2}\,\mathrm{M^{-1}}$	$T = 25 °C, \mu = 1.0 M$	402
$8.8\times10^{-2}\,M^{-1}$	$T = 25 °C, \mu = 1.0 M$	403
3.4×10^{-1} M ⁻¹	$T = 25 °C, \mu = 2.0 M$	400
$2.5\times10^{-1}\,\mathrm{M^{-1}}$	$T = 20 °C, \mu = 5.0 M$	401
	$2HSO_3^- \rightleftharpoons (HSO_3^-)_2$	
$1.75\times10^3\,\mathrm{M^{-1}}$	$T=25\,\,^{\circ}\mathrm{C}, \mu=0\;\mathrm{M}$	404
2.42×10^3 M ⁻¹	$T = 25 °C, \mu = 0.2 M$	404
	$HSO_3^ \rightarrow$ SO_3H^-	
3.98	$T=25\text{ °C}, \mu=-$	405
4.9	$T = 25$ °C, $\mu = 1.0$ M	402

^a In NaCl solutions and presence of Mg²⁺. ^b In NaCl solutions and presence of Ni^{2+} . ^c In NaCl solutions and presence of Mn^{2+} . ^d In NaCl solutions and presence of Co²⁺.

Table 2.3. Rate Constants for the Solvolysis of Sulfur **Dioxide and the Dimerization of Bisulfite**

k	conditions	ref
	$SO_2H_2O \frac{1}{2} HSO_3^- + H^+$	
(1) 3.4 \times 10 ⁶ s ⁻¹	$T = 20 °C, \mu = 0.1 M$	406
$1.06\times10^8\:{\rm s}^{-1}$	$T = 24.7$ °C, $\mu = 0.9$ M	407
(2) 2.0 \times 10^8 $\rm M^{-1}$ $\rm s^{-1}$	$T = 20$ °C, $\mu = 0.1$ M	406
2.48×10^8 M ⁻¹ s ⁻¹	$T = 24.7 \text{ °C}, \mu = 0.9 \text{ M}$	407
	$2HSO_3^{-} \frac{1}{2} S_2 O_5^{2-} + H_2 O$ $1 S^{-1}$ $T = 24.7 °C, \mu = 0.9 M$	
(1) 7.0×10^2 M ⁻¹ s ⁻¹		407
(2) 1.0×10^4 s ⁻¹	$T = 24.7 \text{ °C}, \mu = 0.9 \text{ M}$	407

section 3.2.3) suggest that the pyramidal $HOSO₂$ ⁻ form would provide a stereochemically more tractive site for attack by a nucleophile than the tetrahedral tautomer $HSO₃⁻$. The latter would be more sterically

Figure 2.3. Dependence of the first and second dissociation constant of H_2SO_3 in NaCl solutions on ionic strength at $T = 25$ °C $(K_1 = ((H^+)[HSO_3^-]/[SO_2])$; $K_2 = ((H^+)[SO_3^2^-]$ $[HSO₃⁻]$) (according to ref 384).

Table 2.4. Lewis Base Strength of Different Ligands417 (see also ref 418, p 54)

ligand I_{n-}	Lewis base strength of L^{n-}	$K_{\rm s}$ of the corresponding oxoacid HL
ClO ₄	0.25	10^8
NO_{3}^-	0.33	10 ³
ClO ₃	0.33	10 ³
$\rm H_2O$	0.40	
$\overline{SO_4}^{2-}$	0.50	10^{-2}
NO ₂	0.50	5.0×10^{-4}

hindered and consequently require a higher activation energy.

2.2. Transition Metals

2.2.1. Solvolysis of Transition Metal Ions

The solvolysis of transition metal ions in water can be described by eq 2.8, where A^{n-} represents the anion of the dissolved metal salt. Equation 2.8 can

$$
M^{z+} + yH_2O + aA^{n-} \rightleftharpoons
$$

\n
$$
[M(H_2O)_{\gamma-\nu}(OH)_\nu A_a]^{(z-\nu-an)+} + \nu H^+ (2.8)
$$

be simplified to eq 2.9 when noncomplexing anions,

$$
M^{z+} + yH_2O \rightleftharpoons [M(H_2O)_{y-v}(OH)_v]^{(z-v)+} + vH^+ \tag{2.9}
$$

such as perchlorate, $fCIO_4^{-}, ^{415-417}$ are used (see Table **2.4).** During the solvolysis of a metal salt in water

^{&#}x27;Perchlorate also exhibits a slight ability to form complexes, but it
is less than for other anions. Feng and Waki⁴¹⁵ reported the following
stability constants for iron(III) $(T = 20 °C, \mu = 0.4 M)$: FeClO₄²⁺; 2.1
M⁻¹

Figure 2.4. Ligand exchange mechanisms for metal complexes.

the 0 atoms of the water molecules coordinate directly to the metal ions (inner sphere).^{419,420}

The behavior of dissolved metal ions in water can be described as a function of charge, ionic radius, and electronic structure.421 The aquated metal ions exhibit characteristic acid-base equilibria. Water molecules, bound to a metal ion, are often much more acidic than uncoordinated (free) water molecules, usually by several orders of magnitude. For example, the pK_a of uncoordinated water (15.7) decreases to 9 f or the $[Ni(H_2O)_6]^{2+}$ and to 3 for the $[Fe(H_2O)_6]^{3+}$ complex, respectively.422 Substitution reactions of ligands proceed according to different mecha $n_{\text{loss}}^{223-425}$ In general, substitution mechanisms can be divided into dissociative (d) and associative (a) processes. A transition between both forms are the so called interchange mechanisms $(I_d$ and I_a).⁴²⁶ These mechanisms are summarized in Figure **2.4.** Experimental evidence for the mechanism of a substitution reaction can be obtained from the rate law and the associated activation parameters ΔS^* and ΔV^* . Significantly positive values for ΔS^* and ΔV^* indicate a dissociative, whereas significantly negative values an associative mechanism, respectively.

The water exchange rate has been measured for many metal ions and water exchange can be the ratelimiting factor in a substitution reaction. It is assumed 427 that the mechanism of many substitution reactions involves the fast association of the anion A^a with the hydrolyzed metal ion in the second coordination (solvation) sphere of the metal ion (encounter complex formation), followed by a ratedetermining interchange of ligands: **mitting factor in a substitution reaction. It is
sumed⁴²⁷ that the mechanism of many substitution
actions involves the fast association of the anior
** u^{-} **with the hydrolyzed metal ion in the secono
ordination (solvati**

$$
[\mathbf{M}(\mathbf{H}_{2}\mathbf{O})_{n}]^{m+} + \mathbf{A}^{a-} \frac{\text{very fast}}{\text{m}} \{ [\mathbf{M}(\mathbf{H}_{2}\mathbf{O})_{n}]^{m+} \mathbf{A}^{a-} \}
$$
\n(2.10)

$$
[M(H2O)n]m+ + Aa- \xrightarrow{\text{very fast}}
$$
 {
$$
[M(H2O)n]m+ Aa-
$$
 (2.10)
{
$$
[M(H2O)n]m+ An-
$$
}
$$
= [M(H2O)n-1A](m-a)+ + H2O (2.11)
$$

The substitution mechanism depends on the nature of the metal ion. For example, the substitution of a water ligand by an entering nucleophile proceeds according to an associative interchange mechanism (I_a) for the iron(III) hexaaqua ion, $[Fe(H_2O)_6]^{3+}$, but according to a dissociative interchange mechanism for the iron(III) pentaaquahydroxo ion, $[Fe(H₂O)₅$ -OH12+428,429 (see also ref **430** for water exchange reactions by divalent metal ions).

The metal aqua-hydroxo complexes may dimerize or polymerize, 4^{31} depending on pH and concentration

of pH; $[Fe(III)] = 5.0 \times 10^{-4}$ M, $T = 25 °C.^{387}$ **Figure 2.5. Distribution** of **iron(II1) species as a function**

(see section **2.2.2).** The resulting species can contain μ -oxo or μ -hydroxo bridges (eqs 2.12 and 2.13).

$$
2[MOH]^{(z-1)+} \leftarrow [M-O-M]^{(2z-2)+} + H_2O \quad (2.12)
$$

According to M attock⁴³² the tendency for dimerization of metal ions increases with increasing covalency of the metal hydroxy bond.

The influence of oxo anions on the formation of ligand-bridged double salts in $M_nL_2-M'_nL_2-H_2O$ systems $(M, M' = Mn, Fe, Co, Ni, Cu, etc.)$ depends on the Lewis base strength of the oxo anions (Table 2.4).⁴¹⁷ Double salts are formed when the Lewis base strength of the oxo ligand is higher than that of water. In addition, the ability of double salt formation correlates with the *Ka* values for the corresponding oxo acids.417

2.2.2. *Solvolysis of Iron and Manganese*

Iron and manganese are the most abundant transition metals in the atmosphere (see section **4).** Their solvolysis chemistry in water is rather complex and cannot be treated in detail in this review. For further information see e.g. refs **419** and **433-442.** Stability constants of some iron and manganese complexes are summarized in Table **2.5.**

Manganese(I1) at normal concentrations is not hydrolyzed appreciably before precipitation occurs at pH near 8.437 For iron(II) the dominant species in aqueous solution up to pH **7** is the iron(I1) hexaaqua ion, $Fe(H₂O)₆²⁺.⁴⁴⁹$ This is in contrast to the behavior of iron(II1) in aqueous solution, which exists in many different forms, depending on the concentration and the pH (see Figure **2.5).** These iron(II1) complexes **all** exhibit different stabilities and reactivities (Tables **2.5** and **2.6).** The **iron(II1)-pentaaquahydroxo** complex is about **1000** times more reactive than the hexaaqua complex (see e.g. refs $508-510$), which is probably due to the translabilization effect of the hydroxy ligand.

Important features for the atmospheric significance of transition metal ions as catalysts during the

Figure 2.6. Hydrolysis processes in iron(II1) solutions. Numbers in parentheses give reaction time in seconds at **25 OC419**

oxidation of sulfur(IV) oxides are the dimerization (polymerization) and aging processes of dissolved metal ions, which have an important influence on the overall redox reactions.511 Aqua hydroxo complexes of iron are inclined to dimerize or polymerize at concentrations $>10^{-3}$ M.^{454,512-514} At an iron(III) concentration of 1.1 \times 10⁻⁴ M, the fraction of dinuclear and trinuclear species is reported to be as high as **0.52** at pH **2.Ei515** (see also ref **450).** In contrast, Kraft³⁸⁷ estimated for a 5.0 \times 10⁻⁴ M solution at **2.5** that only **2%** of the iron is in the dimeric form. The dimerization/polymerization results with time, also in acidic solutions, in the precipitation of iron hydroxides (see Figure **2.6).419,513%516** The structure of the precipitated iron hydroxides depends on the anions present in solution. Addition of base to aqueous solutions of iron(II1) perchlorate results in the precipitation of α -FeO(OH), whereas in the case of iron(III) chloride, β -FeO(OH) precipitates.⁵¹⁷⁻⁵¹⁹ β -FeO(OH) converts into α -FeO-(OH) during the further aging process. Depending on the degree of neutralization, α -Fe₂O₃ is also formed. 520 In addition, the precipitation temperature has a direct influence on the crystallization of the amorphic precipitate during the aging process. Depending on the temperature, the precipitation from iron(III) nitrate solutions can consist of $Fe₂O₃$ (hematite) and α -FeO(OH) (goethite).⁵²¹ The influence

of pH, temperature and other reaction parameters on the formation of α -FeO(OH) from Fe(OH)₂ have been studied recently.522

Sulfate acts in a labilizing way on the stability **of** iron(II1) solutions. The solution ages faster and the produced precipitate consists of α -FeO(OH) and α -Fe₂O₃.523,524 Furthermore, the formation of the dimeric species $(FeOH)₂⁴⁺$ occur more rapidly in the presence of sulfate.^{454,457} Recently, Lepentsiotis⁵²⁵ observed, that a high excess of sulfate (10^3-10^4) suppresses precipitation in iron(II1) solutions with a bbserved, that a high excess of sulfate (10^3-10^4)
suppresses precipitation in iron(III) solutions with a
pH \leq 4.5 over several hours. Chloride stabilizes the
formed polymers, because the Cl^- ions are still formed polymers, because the Cl^- ions are still incorporated in the structure and are easily displaced by OH-.519 Figure **2.6** summarizes the aging processes of aqueous iron(II1) solutions.

The dimer $(H_2O)_4Fe(OH)_2Fe(H_2O)_4^{4+}$ which is the third most abundant iron species (after $Fe(H₂O)₆^{3+}$ and $Fe(H₂O)₅(OH)²⁺)$ in aqueous solution of low acidity,^{453,456} dissociates by two parallel pathways, an acid-independent *(k,)* and an acid-dependent one (k_b) :^{454,526-528}

$$
\begin{aligned} \label{eq:4.14} (\mathrm{H_2O})_4\mathrm{Fe(OH)_2Fe(H_2O)_4}^{4+} + 2\mathrm{H_2O}\xrightarrow[k_{\mathrm{a}}]{\frac{k_{\mathrm{a}}}{k_{\mathrm{a}}}}\\ \mathrm{2Fe(H_2O)_5(OH)^{2+}}\\ (\mathrm{H_2O})_4\mathrm{Fe(OH)_2Fe(H_2O)_4}^{4+} + \mathrm{H}^+ + 2\mathrm{H_2O}\xrightarrow[k_{\mathrm{a}}]{\frac{k_{\mathrm{b}}}{k_{\mathrm{a}}}}\\ \mathrm{Fe(H_2O)_6}^{3+} + \mathrm{Fe(H_2O)_5(OH)^{2+}} \end{aligned}
$$

2.3. Oxidants

The oxidation of sulfur(IV) oxides in the atmosphere can be induced by several oxidants, e.g. O_2 , O_3 , H_2O_2 , via uncatalyzed and catalyzed pathways (see section **3).** Besides these, some other oxidants are formed as intermediates, e.g. SO_3^- , SO_5^- , HSO_5^- . The latter species will be treated in section **3.3.2.** Sulfite can also act as oxidant and its role in oxidizing reduced transition metal ions is discussed in section **3.3.4.** Whether or not transition metal ions have a catalytic effect on the oxidation of sulfur(IV) oxides by O_3 or H_2O_2 is still a subject of controversy (see sections **3.2.2** and **3.2.3).** The oxygen-induced oxidation (autoxidation) of sulfur (IV) oxides has been known for over a hundred years to be sensitive toward the presence of transition metal ions (see Introduction). In addition, for atmospheric oxidation processes, oxygen is an ambient oxidant which plays an important role in the overall transition metalcatalyzed oxidation process (see sections **3.3.2** and **3.3.4).** For further information on oxygen chemistry see also ref **529.**

2.3.1. Redox Behavior of Oxygen

The dioxygen molecule *('02',* triplet ground state) is a unique reagent with two unpaired electrons (biradical) and a bond order of **2.529** *All* the chemistry of oxygen is characterized by these properties and only spin-allowed reactions are possible.⁵³⁰

Under mild conditions, oxygen reacts slowly in oxidation processes since the reduction of oxygen

In NaClO₄ solution. ^b In NaCl solution. ^c In NaNO₃ solution. ^d In KCl solution. ^e In KNO₃ solution. ^f In (NH₄)₂SO₄ solution. s For chloro and sulfato complexes of cobalt(II), copper(II), and nickel(II) see e.g. refs 475 and 476; for acetato complexes of these metals see e.g. refs 477 and 478. ^h Estimated value.

occurs stepwise (Figure 2.7).^{532,533} The complete redox potential can only be used when the oxidation occurs in a more or less simultaneous four-electron process.532 The oxidation potential of oxygen can be increased by the presence of metal ions.530,534,535 The role of the metal ion in the activation of oxygen can be explained by the formation of metal oxygen complexes, in which the chemical character of the oxygen has changed. $536,537$ The intermediate complexes must contain either a superoxo, peroxo, or an oxo ligand,538 as shown in eq 2.14.

The complex has superoxo or peroxo structure when the metal is a one or two electron donor, respectively. These oxygen adducts can react with another metal to form the μ -peroxo species, MO₂M.

The latter species can be transformed into the oxo form, MO, by scission of the *0-0* bond or into the μ -oxo species, MOM, by loss of one oxygen atom.⁵³⁸

Oxygen can be reduced electrochemically to the

peroxide anion without scission of the O–O bond:⁵³⁰

$$
O_2 \rightarrow O_2^{\bullet-} \rightarrow O_2^{\bullet-} \qquad (2.15)
$$

supercxide peroxide

The first one-electron process is energetically unfavorable: the oxygen molecule is a weak oxidant if the product is superoxide or hydrogen superoxide, HO2. In contrast, the superoxide anion is a strong reductant.539 In the case of a complete reduction of the oxygen molecule the *0-0* bond must be cleaved in one of the reaction steps. Due to the fact that the

scission of a single bond in the peroxide anion is energetically easier than the scission of a double bond, the scission of the *0-0* bond occurs following electron transfer to the oxygen molecule.532

2.3.2. *Solubility of Oxygen*

The solubility of a gas in pure water can be described by Henry's law (eq **2.16),** according to which

$$
c = H p_{\rm g} = H y_{\rm g} p \tag{2.16}
$$

the concentration **c** of a gas in solution is proportional to its partial pressure *pg* or the total gas pressure *p* above the solution. (For general information on gas

pH 14:

Figure **2.7.** Reduction potentials of **oxygen** in water at $p_{O_2} = 1$ atm.⁵³¹

solubility see e.g. refs 540 and 541; for the solubility of oxygen in sea water see ref 542.) If other substances are dissolved in the solution, the solubility of the gas decreases (salting-out effect; see Table 2.7 and refs 548 and 549) and may not follow Henry's law any longer.

The solubility of oxygen in aqueous sulfite media can be described by Henry's law $(T = 0-30$ °C, $P_{O_2} =$ 0.6-2 bar, $c_{\text{SO}_3}^{2-} = 0.05-1.2 \text{ M}, \text{pH} \approx 8.546 \text{ Slight}$ deviations from Henry's law have been observed in aqueous sulfate solutions.550 **For** the solubility of oxygen in aqueous sulfate media, Linek and Vace k^{547} reported an empirical equation (valid for $T = 15-35$ $^{\circ}C$, $c_{SO_4}^2 = 0-1$ M) which can be used to calculate the oxygen concentration in an aqueous sulfate solution as a function of the $[SO_4^{2-}]$ (see Table 2.7):

$$
c_{\text{O}_2} = (5.909 \times 10^{-6}) p_{\text{O}_2} \times \exp\left[\frac{1602.1}{T} - \frac{0.9407 c_{\text{SO}_4^2}}{1 + 0.1933 c_{\text{SO}_4^2}}\right] M \quad (2.17)
$$

With the assumption that the solubility of oxygen in sodium sulfite is equal to that in sodium sulfate (at 25 "C the solubility in aqueous sodium sulfite solutions is about 10% higher than in aqueous sodium

Table 2.7. Solubility of Oxygen in Aqueous Salt Solutions at 25 °C $(p_0 = 1$ atm)

^a Calculated by Henry's law. ^b Estimated value. ^c Calculated value by an empirical equation of Linek and Vacek;⁵⁴⁷ see text for further information.

sulfate solutions of the same concentration, $511,546$ the oxygen solubility in aqueous sodium sulfite solutions has also been estimated for some concentrations in Table 2.7 with the aid of eq 2.17.

In the case of atmospheric water droplets, saltingout effects may play an important role, because atmospheric water droplets may contain various dissolved ions. Thus, the concentration of dissolved gases may be less than theoretically expected. Different theories have been proposed, e.g. the hydration theory,551 the electrostatic theory,552 or the van der Waals theory,553 to account for the salting-out effect.

The salting-out effect can be described for most electrolyte solutions by the relationship (eq 2.18) originally suggested by Setschenow,^{554,555} where c_0

$$
log(c_0/c) = Kc_{\rm el}
$$
 (2.18)

represents the solubility of the gas in water, *c* the concentration of the gas in the electrolyte solution with the concentration c_{el} , and K the Setschenow constant. This relationship was improved by van Krevelen and Hoftijzer⁵⁵⁶ to include the ionic strength

Table 2.8. Solubility of Oxygen in Aqueous Solution at 26 "C as a Function of pH

pH	$[O_2]$, M	remarks	ref
6.5	1.52×10^{-4} a	0.8 M Na ₂ SO ₃ solution; air saturated	559
6.5	1.53×10^{-4}	0.8 M Na ₂ SO ₃ solution; air saturated	559
7.5	1.53×10^{-4} a	0.8 M Na ₂ SO ₃ solution; air saturated	559
7.5	1.53×10^{-4}	0.8 M Na ₂ SO ₃ solution; air saturated	559
8.0	1.54×10^{-4} a	0.8 M Na ₂ SO ₃ solution; air saturated	559
8.0	1.53×10^{-4}	0.8 M Na ₂ SO ₃ solution; air saturated	559
9.0	1.54×10^{-4} ^a	0.8 M Na ₂ SO ₃ solution; air saturated	559
9.0	1.53×10^{-4}	0.8 M Na ₂ SO ₃ solution; air saturated	559
5.0	1.25×10^{-3}	0.05 M KH ₂ PO ₄ -NaOH buffer; ^c O ₂ saturated	511
6.0	1.26×10^{-3}	0.05 M KH ₂ PO ₄ -NaOH buffer; ^c O ₂ saturated	511
7.0	1.24×10^{-3}	0.05 M KH ₂ PO ₄ -NaOH buffer; ^c O ₂ saturated	511
8.0	1.26×10^{-3}	0.05 M KH ₂ PO ₄ -NaOH buffer: ^c O ₂ saturated	511

^{*a*} Calculated value by a relation of Schumpe et al.⁵⁵⁰ ^{*b*} Calculated value by an empirical equation of Linek and Vacek;⁵⁴⁷ see text for further information. ^{*c*} Buffer according to Perrin and Dempsey.⁵⁶⁰

Figure 3.1. Pathways for the atmospheric oxidation of sulfur(IV) oxides.

 μ and the salting-out constant *h* as given in eqs 2.19 and **2.20.** The electrolyte activity can be better

$$
log(c_0/c) = h\mu \tag{2.19}
$$

$$
h = h_{\rm G} + h_{+} + h_{-}
$$
 (2.20)

described as function of the ionic strength and the salting-out constant *h,* which consists of the fractions of the dissolved gas (h_G) , the dissolved cations $(h_+),$ and the dissolved anions (h_{-}) . For typical values of *hG, h+,* and *h-* see refs **549,550,557,** and **558.** When using the salting-out theories it must be kept in mind, that nonpolar gases (e.g. O_2 , H_2) dissolve as molecules, whereas polar gases undergo hydrolysis in aqueous solution.558

The pH of the aqueous solution has almost no influence on the stability of oxygen (Table **2.8;** see also ref **549). A** pH dependence was predicted by Tamura et al.561 who used a carbonic acid-bicarbonate buffer system in their experiments. However, the partial pressure of oxygen changes with the partial pressure of carbon dioxide, which is much more soluble in water than oxygen (Table **2.1).** Thus, the dissolved oxygen decreases with decreasing pH and reaches a value of 4.0×10^{-4} M at pH 6.0 and p_{O_2} = **1** atm.561

3. *Mechanistic Considerations*

3.1. General information

The oxidation of sulfur (IV) species in the atmosphere follows different reaction pathways (Figure **3.1).** Because of the very complex processes in the atmosphere it is impossible to distinguish between single reaction steps. Many processes run parallel, and may influence each other or depend on meteorological conditions (Table **3.1). A** theoretical evaluation of the single processes is only possible by comparing the individual rate constants of these reactions. In addition, the chemistry in atmospheric water droplets is determined by their origin (continental or marine).564,565 Water droplets with marine origin contain for instance much higher concentrations of chloride ions than continental water droplets. The latter usually exhibit higher concentrations of transition metal ions or oxides. Furthermore, it is important to distinguish between rain, cloud, and fog water. Measurements in North America indicate, that the concentrations of H^+ , NO_3^- , and SO_4^{2-} ions are **5** to **10** times higher in cloud water than in rain water.^{365,566,567} These ions can affect the oxidation of sulfur(IV) oxides (see section **3.5).**

For a detailed discussion on atmospheric relevant S(IV) oxidation reactions see e.g. refs **153,** 280, 568, and **569.** The most important oxidizing agents in the case of the atmospheric oxidation of sulfur (V) oxides are ozone, O₃ (see section 3.2.2),^{570,571} hydrogen peroxide, H202 (see section **3.2.3),570,571** and hydroxyl radicals, OH (see section **3.2.4).247,572** The possible catalytic role of transition metal ions in these processes and the contribution of the transition metalcatalyzed autoxidation to the overall reaction process still remains uncertain (see further Discussion).

In a dry atmosphere, $SO₂$ oxidation occurs via the gas phase reaction with e.g. OH' radicals. If clouds or fog are present, liquid-phase oxidation of SO_2 becomes the primary pathway for sulfate formation.⁵⁷³ Furthermore, during the nighttime atmospheric SO_4^2 ⁻ production is dominated by aqueous phase pathways.569

The fractional contribution of O_3 on the oxidation of sulfur(IV) oxides in fog is around **4%** in **3** h.243 For cloud water (pH \geq 4), Seigneur and Saxena⁵⁷³ calculated a contribution of **l** to **10%** h-l from 03 on the SO_4^2 ⁻ formation. In remote (normally rural) areas the $O₃$ -induced oxidation can be compared with the

Table 3.1

 Mn^{2+} ≤ 1 ≤ 1 ≤ 22 ≥ 29

Table 3.2. Estimated Oxidation Rates in Aqueous Solution for [SO21 = **10 ppbST6**

	oxidation rate $(\% h^{-1})$					
catalyst or oxidant	$LWC^a = 50 \mu g m^{-3}$		$LWC = 0.1 g m^{-3}$		$LWC = 1 g m^{-3}$	
	$pH = 2$	$pH = 3$	$pH = 2$	$pH = 3$	$pH = 2$	$pH = 3$
Mn(II) ^b Fe(III) ^b \mathbf{C}^b	10 0.5 30	10 ³ 5×10^3 30	2×10^4 10^3 6×10^4	2×10^6 $10^7\,$ 6×10^4	2×10^5 10^4 6×10^5	2×10^7 10^{8} 6×10^5
O_3 40 ppb ^c 120 ppb	2×10^{-6} 6×10^{-6}	2×10^{-4} 6×10^{-4}	4×10^{-3} 1.2×10^{-2}	4×10^{-1} $1.2\,$	4×10^{-2} 0.12	4 12
$\rm H_2O_2$ 1 ppb ^c 10 ppb	3×10^{-2} 0.2	3×10^{-2} 0.3	60 4×10^2	60 6×10^{2}	6×10^2 4×10^3	6×10^2 6×10^3

1.99 μ g m⁻³, 1 ppb H₂O₂ \approx 1.41 μ g m⁻³, at *T* = 20 °C, *p* = 1.013 bar.⁵⁷⁷ a LWC = liquid water content. b [Fe³⁺] = 2 μ g m⁻³, [Mn²⁺] = 2 \times 10⁻² μ g m⁻³, [C] = 10 μ g m^{-3 c} 1 ppb SO₂ \approx 2.66 μ g m⁻³, 1 ppb $O_3 \approx 1.99$ μ g m⁻³, 1 ppb $H_2O_2 \approx 1.41$ μ g m

synergistic catalyzed (see section **3.5.5)** oxidation in the pH range **3-4.5.574**

According to Saxena and Seigneur,⁵⁶⁹ the aqueous phase reaction of SO_2 with H_2O_2 becomes important only at low temperatures, when the solubility of these gases is relatively high.

For polluted areas (e.g. cities) the uncatalyzed autoxidation is comparable with the iron-catalyzed reaction. In the presence of manganese $(c > 10^{-6} M,$ autoxidation is comparable with the iron-catalyzed
reaction. In the presence of manganese $(c > 10^{-6} M,$
 $3 \leq pH \leq 5$), the catalyzed reaction dominates.⁵⁶⁹
Computer simulations⁵⁷⁵ indicate that the contribution of the transition metal-catalyzed pathway on the S042- formation amounts to between **30-55%** at pH **4** (see also Table **3.lb).** Due to the low concentrations of transition metal ions in the atmosphere (see Table **1.7),** this pathway plays, according to Cocks and McElroy,⁵⁶³ only a minor role in the United States, whereas in England the iron-catalyzed autoxidation of SO_2 is as important as the oxidation by O_3 .

The most important factors influencing the importance of the various SO_2 oxidation pathways are the meteorological conditions (e.g. the relative humidity), the season (e.g. the formation of $OH⁺$ radicals depending on the solar radiation; see also Table **3.1),** and the pollution level (e.g. the ambient concentration of trace metals; see Tables **1.7** and **1.8).** Table 3.2 summarizes calculated $SO₂$ oxidation rates as function of the relative humidity. It is obvious that both the liquid water content (LWC) and the pH (see section **3.5.5** and Figure **3.2)** have a certain influence

Figure 3.2. Percent per hour oxidation of total sulfur(IV) in a cloud. Conditions: $[SO_2] = 5$ ppbV, $LWC = 1$ mL m⁻³, $T = 25 \text{ °C}$; assumption: no rate limitations due to mass $\,$ transport. 578

on the SO_2 oxidation rate. With increasing LWC the oxidation rate increases. The importance of manganese catalysis decreases compared to the iron catalysis with increasing pH. The same results for the influence of LWC and pH were obtained by Cocks and McElroy,⁵⁶³ who performed a similar calculation (LWC 0.5-1 g m-3, pH **3-4)** as shown in Table **3.2.**

^a In Milli-R/Q-water. ^b In destilled water. ^c Presence of 0.1 M acetate buffer. ^d S(IV) + HSO₅⁻. ^e S(IV) + SO₅²⁻. ^f Ionic strength 0.5-1 M. *8* Ionic strength 1.5 M. *h* Presence of 0.5 M phosphate. ^{*i*} No buffer. *J* Presence of borate. *^k* Presence of 1 mM phosphate + KOH. ^{*l*} Presence of 0.1 M KOH.

Furthermore, the *SO2* oxidation by radicals, e.g. OH^{*}, Cl₂^{*-} or SO₄^{*-564,579-583} should also be mentioned here (see section **3.2.4** for further information).

Rate constants for some uncatalyzed oxidation reactions of sulfur(IV) oxides are summarized in

Table **3.3** The reaction rate of the uncatalyzed oxidation of *S(W)* is often too high, because traces of transition metals in the water enhance the "uncatalyzed" process.613 Addition of complexing agents such 3.2. The Uncatalyzed Oxidation of Sulfur(IV) Oxides as EDTA or 1,10-phenanthroline, in order to mask possibly present metal ions, reduces the rate of the "uncatalyzed" process significantly. 613 These sub-

Table 3.4. Selected Literature on the Oxidation of Sdfbr(IV) Oxides in Atmospheric Water Samples

water sample	remarks	ref
rain water	half-life time for sulfite is ca. 10 h; (pH \sim 7); oxidation rate corresponds to a metal concentration of 0 M	200
rain water	oxidation rate of sulfite is directly proportional to the manganese concentration and independent of pH $(3.7-4.4)$. At [Mn] = 0-5 μ M oxidation rate in distilled water significantly lower than in rain water	172
rain water	oxidation rate of sulfite oxidation in rain water is 50 to 100 times faster than the rate of the uncatalyzed oxidation; pH 3-5	175
rain water	half-life time of sulfite ca. 2.1 h (pH 4.4); oxidation rate is determined by the iron(III) and manganese (II) concentration; oxidation rate in rain water is around 1000 times faster than in pure water	332
rain water	oxidation rate is primarily determined by the iron concentration and the pH; poor correlation between the oxidation rate and the manganese, copper and zinc concentrations	614
fog water	oxidation rate significantly lower than those expected for the iron catalyzed autoxidation of sulfite; $pH 2.9 - 4.2$	181

stances do not act as radical scavengers. This is important if free radicals are involved in the overall redox reaction (see section **3.3).** Thus for the study of the uncatalyzed oxidation process the pureness of the water is an important factor. Selected literature on the oxidation of sulfur(IV) oxides in atmospheric water samples is summarized in Table **3.4.** Clarke and Radojevic⁵⁸⁴ obtained a 7 times slower rate constant for the uncatalyzed reaction when using Milli-WQ water instead of deionized water (see Table **3.3).** No influence of the water quality was observed in the case of the cobalt(I1)- and iron(II1)-catalyzed autoxidation reaction. $511,615$ The iron and copper concentrations in deionized water are approximately $5 \times 10^{-8} - 5 \times 10^{-7}$ M and $6 \times 10^{-8} - 2 \times 10^{-7}$ M, r espectively, 613,616 which can probably catalyze the overall reaction process. First hints concerning the influence of the water quality on the rate constant of the SO_2 oxidation were given by Titoff.⁶¹⁷ The origin of the sulfite salt can also have an influence on the overall reaction rate.615,618,619

 $Sulfur(V)$ oxides form addition products with formaldehyde depending on the pH, viz. hydroxymethane sulfonate, HMS, or hydroxymethane sulfonic acid, HMSA.620-630 Both HMS/HMSA and formaldehyde have been found in atmospheric water samples. $369,630,631-637$ HMS/HMSA is not oxidized by either hydrogen peroxide or ozone592,627,632 but reacts with hydroxyl radicals.^{629,638} According to Chapman,⁶³⁹ more than 60% of the total sulfur(IV) in wintertime precipitation is present in a form other than dissolved SO_2 . The most likely form is HMS, although other aldehyde-sulfur(IV) adducts may also be present. Facchini et al.630 determined in fog water samples with a pH > **4.5** that on average **95%** of the formaldehyde is present as HMSA (compare also with ref 628). At lower pH HMSA formation is limited by the availability of sulfur (IV) in solution. Equilibrium computations by Munger et al.633 indicate that high concentrations of $\text{suffix}(IV)$ in atmospheric water droplets cannot be achieved without the formation of S(IV)-RCHO adducts. Laboratory experiments have confirmed that *S(IV)* and H_2O_2 can coexist for hours in the presence of formaldehyde, even when the HCHO and **S(IV)** concentrations were both as low as 10 μ M.⁶²⁷ It follows that sulfur(IV) oxides can be stabilized by formaldehyde in atmospheric water droplets. Whether transition metal

ions have any influence on this situation is presently unknown.

The mechanism of the uncatalyzed oxidation of sulfur(IV) oxides by O_2 , O_3 , H_2O_2 , radicals or NO_r , have been discussed in the literature in detail and will only be summarized here. For mechanistic studies on the oxidation of HMS by OH radicals see refs **629** and **638.**

3.2.1. Oxidation of Sulfur(1V) Oxides by Oxygen

One of the first studies on the influence of $O₂$ on the oxidation of $S(IV)$ was performed by Bigelow.⁶⁴⁰ In the case of the uncatalyzed oxidation reactions, the oxygen concentration dependence is discussed in a contradictory way in the literature (see Table **3.18).** In some cases, no oxygen dependence was observed in the range $3 \leq pH \leq 7,587,641$ whereas an oxygen dependence was found at $pH > 8.574,591$ In other cases, a number of authors $555,642,643$ found a first-order dependence on *02* but no dependence on the initial pH (see Table **3.18).** The pH dependence of the uncatalyzed oxidation and the iron(II1)-catalyzed oxidation of sulfur(IV) oxides is summarized in Figure **3.3.** The pH dependence can be explained by the redox potentials of O_2 (see Figure 2.7) and that of the different sulfur(IV) species (see Figure **2.2** and Table 3.5). It is evident that $SO₃²⁻$ is easier oxidized by oxygen than $HSO₃⁻$ (see section 3.5.5).

The pH profile for the uncatalyzed autoxidation reaction (Figure **3.4)** shows that the pH of the solution decreases during the reaction, but that the reaction rate is not influenced by the pH change during the first part of the reaction until the pH decreases below a value between **5.7** and **5.9.559** This pH profile indicates that the sulfite oxidation mechanism depends on the $HSO₃⁻$ concentration. It should be noted here that similar pH profiles have been reported for the iron(I1, 111)-catalyzed reaction when starting with an initial pH around 6 (Figure 3.4).^{511,660} It is suggested that during the uncatalyzed autoxidation of sulfur(IV) oxides the disulfate ion, $S_2O_7^{2-}$, is formed, which decomposes via hydrolysis into products (reaction 3.1):^{661,662}

$$
S_2O_7^{2-}
$$
 + H₂O \rightarrow 2SO₄²⁻ + 2H⁺ $k = 0.013$ s^{-1 a}
(3.1)

^{*a*}Reference 662 *(T* = 25 °C, μ = 0.5 M, independent of pH in the range 2 \leq pH \leq 5)

Table 3.5. Redox Potentials of Some Sulfur Oxides

redox couple	E° (V)	рH	ref
SO_2/SO_2 -	-0.17	0	644
	-0.262		645
	-0.288	1.0	644
	-0.31	2.0	644
${\rm SO_3}^-{\rm /SO_3}^{2-}$	0.63	>7.0	646
	0.72		647
	0.76		648
	0.89^b		649
SO_3 - HSO_3 -	0.84	3.6	646
SO_4^{-}/SO_4^{2-}	2.43		650
	$2.52 - 3.08^a$		651
	2.6		652
$\mathrm{SO_4^{2-}}/\mathrm{SO_3^{2-}}$	-0.93		653
$\mathrm{SO_4^{2-}/H_2SO_3}$	0.172		653
$2SO_4{}^2^-/S_2O_6{}^2^-$	-0.22		653
$2{\rm SO}_4{}^2{}^{\scriptscriptstyle -}/{{\rm S}_2{}{\rm O}_8}{}^2{}^{\scriptscriptstyle -}$	1.939		654
	2.01		380
$2HSO_4^-/S_2O_8^2^-$	2.057		654
SO_5 ⁻ / HSO_5 ⁻	$1.1\,$	7.0	646
HSO_5^-/HSO_4^-	1.81		655
	1.82		656
	1.842		657
HSO_{5}^{-}/SO_{4}^{2-}	1.75	$3 - 9$	655
$SO_6^2^-/SO_4^2^-$	1.22	>10	655
$S_2O_4^2$ ⁻ /HSO ₃ ⁻	-0.386^a	7	658
$S_2O_6{}^{2-}/2SO_3{}^{2-}$	0.07		659
$S_2O_6{}^{2-}/SO_3{}^-$, $SO_3{}^{2-}$	-0.49		650
$S_2O_6^2$ ²⁻ /2H ₂ SO ₃	0.564		653
$S_2O_8^2$ ⁻ /SO ₄ ⁻ , SO ₄ ²⁻	1.39		652

^a Estimated value. ^b Calculated upper limit.

O3 is a water-soluble gas (see Table **2.1),** which can decompose in water under formation of OH' radicals $(OH^-$ catalysis),⁶⁶⁶⁻⁶⁶⁸ as shown in the following reactions:

rates of *SOz* as a function of pH: (a) ref 570, and **(b)** ref

In the gas phase sulfur dioxide can be oxidized by oxygen to sulfur trioxide, *S03,* which reacts very rapidly with water to form sulfuric acid. $663-665$

3.2.2. *Oxidation of Su/fur(/V) Oxides by Ozone*

153.

reactions:
\n
$$
O_3 + OH^- \rightarrow O_2^{\bullet-} + HO_2
$$

\n $k = 70 M^{-1} s^{-1} {}^{669}$
\n $k = 3.7 \times 10^2 M^{-1} s^{-1} {}^{670}$ (3.2)

$$
k = 3.7 \times 10^{2} \text{ M}^{-1} \text{ s}^{-200}
$$
 (3.2)
 $O_3 + HO_2 \rightarrow OH^* + 2O_2$
 $k = 4.0 \times 10^6 \text{ M}^{-1} \text{ s}^{-1.671}$ (3.3)

$$
O_3 + OH^{\bullet} \rightarrow HO_2 + O_2
$$

\n $k < 1.0 \times 10^4 \text{ M}^{-1} \text{ s}^{-1} \text{ }^{672}$
\n $k = 2.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ }^{673} \text{ } (3.4)$

$$
OH• + HO2 \rightarrow O2 + H2O
$$

\n $k = 3.1 \times 10^{9} \text{ M}^{-1} \text{ s}^{-1.674}$
\n $k = 7.0 \times 10^{9} \text{ M}^{-1} \text{ s}^{-1.675} \quad (3.5)$

Figure 3.4. pH profile for the uncatalyzed⁵⁵⁹ (time scale a) and the $\text{Fe(II,III)-catalyzed}^{660}$ oxidation of sulfur(IV) oxides (time scale b). Conditions for the uncatalyzed process: $[S(IV)] = 0.79$ M, $T = 20$ °C, $pH = 6.4$. Conditions for the Fe(II,III)-catalyzed process: $[Fe]_{total} = 0.2 \mu g \text{ mL}^{-1}$,

$$
[S(TV)] = 8 \mu g \text{ mL}^{-1}, T = 25 \text{ °C}, \text{pH} = 5.0.
$$

\n
$$
HO_2 + HO_2 \rightarrow H_2O_2 + O_2
$$

\n
$$
k = 7.6 \times 10^5 \text{ M}^{-1} \text{ s}^{-1} \text{ s}^{74}
$$

\n
$$
k = 8.6 \times 10^5 \text{ M}^{-1} \text{ s}^{-1} \text{ s}^{76} \text{ (3.6)}
$$

The mechanism **of** the oxidation of *S(W)* by ozone remains uncertain.565 **A** simple oxygen transfer reaction is discussed 677 as well as an electrophilic attack of ozone on the sulfur atom of the sulfur(IV) oxide species.^{592,678} A free radical mechanism has also been proposed.^{570,590,591,593} The reaction is described uniformly in the literature as first order in $[S(IV)]$ and $[O₃]^{570,578,590,677}$ In contrast, there are different results concerning the pH dependence of the process (see e.g. refs 590 and **677).**

The influence of metal ions on the overall reaction rate has been studied, but the results are controversial. Martin,⁵⁷⁸ Lagrange et al.⁵⁹⁰ and Botha et al.⁵⁹³ observed no influence of transition metal ions (Cr^{3+}) . Fe³⁺, Fe²⁺, Mn²⁺, Cu²⁺), whereas Harrison et al.⁶⁷⁹ found a catalytic effect of Mn^{2+} and Fe^{3+} . In the latter case the oxidation rate increased linearly with increasing iron(II1) concentration.

The influence of oxygen on the oxidation of sulfur- **(IV)** oxides by ozone has been studied recently.593 **An** increase in oxygen concentration results in an increase in the overall oxidation rate, indicating that oxygen plays a role in the overall mechanism. For this reason, Botha et a1.593 proposed a reaction mechanism which includes the oxidation of sulfur- (IV) oxides by $HSO₅⁻$. The $HSO₅⁻$ anion is formed by the reaction of the OH' radical (e.g. from reaction **3.3)** with the sulfur(IV) oxides (see section **3.2.4).**

3.2.3. Oxidation of Sulfur(1v) Oxides by Hydrogen Peroxide

For a detailed treatment of the atmospheric chemistry of hydrogen peroxide see refs **680** and **681.** For an overview about the role of hydrogen peroxide in aquatic systems see ref **682.** Recently, the photochemical formation of hydrogen peroxide has been identified as an important source in atmospheric water droplets.⁶⁸³⁻⁶⁸⁷ Hydrogen peroxide hydrolyzes

in aqueous solution:^{688,689}
\nH₂O₂ + H₂O
$$
\rightleftharpoons
$$
 H₃O⁺ + HO₂⁻
\nK = 2.4 × 10⁻¹² M³⁸⁰ (3.7)

The oxidation of $\text{suffix}(IV)$ oxides by hydrogen peroxide is characterized by a strong pH dependence (Figure 3.3).^{564,690-693} For the pH range $2-\hat{6}$, Drexler et al.691 found the following rate law (see also refs **564** and **690):**

$$
r = (k_{\text{H}}[H^+] + k_{\text{HX}}[HX] + k_{\text{p}}[HSO_3^-][H_2O_2]
$$

where $H =$ proton activity, $HX =$ buffer (e.g. formic or acetic acid), and k_p = water induced reaction path. The reaction mechanism for the oxidation of sulfur- (IV) oxides by hydrogen peroxide is still uncertain. Probably a peroxomonosulfurous acid intermediate

$$
\begin{matrix} -0 \\ 0 \end{matrix} \times 5-0OH
$$

is formed via a rapid nucleophilic displacement of $H₂O$ by $H₂O₂$ on $HSO₃⁻$, followed by a rate-determining rearrangement that results in the production of sulfuric acid. $564,690-692,694,695$ There is presently no evidence for the participation of the pyrosulfite ion, *S~05~-,* in the overall reaction scheme695 and it has not been taken into account in recent litera-
ture ^{680,691–693,696–698}

The influence of the ionic strength on the overall reaction rate depends on the pH. Drexler et al.⁶⁹¹
observed no influence of the ionic strength in the
range $4.6 \leq pH \leq 4.8$. Penkett et al.⁵⁷⁰ reported no
influence of the ionic strength at pH 6.6 but observed observed no influence of the ionic strength in the range $4.6 \leq pH \leq 4.8$. Penkett et al.⁵⁷⁰ reported no influence of the ionic strength at pH **6.6,** but observed a decrease in the reaction rate with increasing ionic strength at pH 8.2. Breytenbach et al.⁶⁹³ found a

decrease of about **20%** in the observed pseudo-firstorder rate constants when they increased the ionic strength from 0.1 to **1.0** M (pH **3.5-5.0).** Lagrange et al. 698 reported different influences of the ionic strength depending on the employed electrolyte medium. In an aqueous $NaClO₄$ medium the thirdorder rate constant exhibits a nearly bell-shaped ionic strength dependence with a maximum between **0.2** and **0.4** M. When aqueous NaCl solution is used as medium Lagrange et al.⁶⁹⁸ find no dependence of the third-order rate constant on the ionic strength. In an aqueous $Na₂SO₄$ solution the third-order rate constant decreases by 40% when the ionic strength is increased from **0.4** to **1.0** M.

The influence of buffers on the oxidation of sulfur- (IV) oxides by hydrogen peroxide has been studied in detail. For example, Lagrange et al.698 obtained higher reaction rates in phosphate buffer than in acetate buffers. **A** linear increase of the reaction rate with increasing formate or acetate concentration has been reported by Drexler et al.⁶⁹¹ Formic acid has a stronger influence on *hobs* than acetic acid.

As in the case of *03* (see section **3.2.2),** the influence of metal ions on the overall oxidation process of the $S(IV)-H₂O₂$ reaction is a subject of controversy. In general, metal ion concentrations between **4** and **40** μ M are required for a significant catalytic effect,⁶⁸⁰ especially when the Fenton-type reactions (transition metal catalyzed decomposition of H_2O_2 ; see e.g. refs **699-701)** are taken into account. No influence of Fe^{3+} , Cr^{3+} , Cu^{2+} , and Mn^{2+} was reported by Lagrange et al.698 These authors observed only a small catalytic effect in the presence of Fe^{2+} . Drexler et al.⁷⁰² found no influence of Fe^{2+} , Mn^{2+} , Ni^{2+} , Co^{2+} , and Cu^{2+} . No catalysis in the presence of Fe^{3+} or Mn^{2+} was found by Martin and Damschen.⁶⁹⁰ In contrast, Ibusuki et **al.697** reported catalytic effects by addition of Fe³⁺, Fe²⁺, Co²⁺, Mn²⁺, and Ni²⁺. Fe²⁺ exhibits the strongest catalytic activity (see also Table **4.1).** Breytenbach et al.693 observed an acceleration of the reaction by iron(II), if the iron is added to the H_2O_2 solution. No kinetic effect was observed when the $iron(II)$ is added to the sulfur (IV) solution under argon atmosphere. No surface catalytic effects were observed when the $S(IV)-H₂O₂$ system was studied in aqueous suspensions of SiO_2 , Al_2O_3 , or TiO_2 .⁷⁰³

3.2.4. Oxidation of Sulfur(lV) Oxides by Radicals

The most important reaction of sulfur(IV) oxides with radicals in the atmosphere is the one with the hydroxyl radicals, OH^{*},²⁴⁷ which are mainly produced via photochemical processes.^{564,685,687,704-706} For a detailed account on atmospheric OH[.] chemistry see refs **705,707,** and **708.** Other radical sources are for instance the reaction of O_3 with organic compounds⁷⁰⁹ and the reaction of HO2 with **NO.704** During the reaction of sulfur(IV) oxides with OH' radicals the

sulfite radical, SO₃⁻, is formed:^{581,705,710,711}
\n
$$
HSO_3^- + OH^* \rightarrow SO_3^{*-} + H_2O
$$
\n
$$
k = 2.7 \times 10^9 M^{-1} s^{-1} 605
$$
\n
$$
k = 4.5 \times 10^9 M^{-1} s^{-1} 582
$$
\n(3.8)

150 Chemical Reviews, 1995, Vol. 95, No. 1
\n
$$
SO_3^{2-} + OH^* \rightarrow SO_3^{*+} + OH^+
$$
\n
$$
k = 4.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ }^{605}
$$
\n
$$
k = 5.2 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ }^{582} \text{ } (3.9)
$$

The mechanism of the $S(V)$ -OH \cdot reaction is still uncertain. For a discussion see refs 581 and 712.

The influence of chloride on the overall reaction rate (see also section **3.5.1)** has been studied, It inhibits the oxidation rate and it is suggested that it acts as a radical scavenger.581

The influence of the ionic strength on the oxidation of sulfur (IV) oxides by radicals was recently studied.^{607,713} This study indicates an increase of the reaction rate with increasing ionic strength.

3.2.5. *Oxidation of Su/fur(/V) Oxides by Nitrogen Oxides*

In aqueous solution only NO, NO₂, N₂O, and the dimeric species N_2O_2 and N_2O_4 are stable species. NO and $NO₂$ are in equilibrium with their corresponding dimers: **2NO** $\div N_2O_2$ (3.10)

$$
2NO \leftarrow N_2O_2 \tag{3.10}
$$

$$
2NO_2 \rightleftharpoons N_2O_4 \tag{3.11}
$$

According to Kameoka and Pigford,⁷¹⁴ N₂O₄ reacts more rapidly with water and electrolyte solutions than does $NO₂$ when absorbed into water or aqueous solutions, respectively.

Nitrous acid, $HNO₂$, formed in the gas phase, dissociates in aqueous solution into the nitrite ion, which is a strong oxidizing agent.
 $NO(g) + OH' \rightarrow HNO_2$ (3.12)

$$
NO(g) + OH^{\bullet} \rightarrow HNO_2 \tag{3.12}
$$

$$
HNO2 = H+ + NO2
$$
 (3.13)

In view of flue gas desulfurization and atmospheric processes, the reactions of NO_v with sulfur(IV) oxides are important. The influence of NO_r on the oxidation of SO₂ in artificial flue gases exhibits for NO₂ an acceleration of the process whereas NO inhibits the reaction.⁷¹⁵ The oxidation of sulfur(IV) oxides by NO_y results in many sulfur-nitrogen (S-N) compounds (see Figure **3.5)** which can undergo further reactions. During the hydrolysis of these substances SO_4^{2-} and $S_2O_6^{2-}$ (dithionate) can be formed as possible products (see also section **3.5.6).**

S-N compounds have been reported since the 19th century.717-721 The decomposition of S-N compounds was probably studied the first time by Wagner.⁷²¹ For review articles concerning S-N chemistry see e.g. refs 578 and 722-724.

In principle, the reactions of $S(V)$ oxides with NO_y can be divided into different groups: (1) reactions with $N(II)$ oxides, e.g. $NO;^{715,725-728}$ (2) reactions with N(III) oxides, e.g. $\overline{NO_2}^-$ and \overline{HONO} ;^{726,729-733} and (3) reactions with $N(V)$ oxides, e.g. NO_2 .^{609,610,715,734-736} The reactions mentioned in Figure **3.5** cannot be discussed in detail in this review. By way of example only the reaction of the nitrite ion, $NO₂⁻$, with sulfur-(IV) will be mentioned here. The main S-N compound formed during this reaction is hydroxylamine disulfonate, **HADS.729-733** Ion chromatographic studies733 in Ar-saturated aqueous solutions suggest the following reaction mechanism:

$$
NO2- + H+ \rightleftharpoons HONO \qquad (3.13)
$$

$$
NO_2 + H
$$
 = HONO (3.13)
HONO + HSO₃⁻ \rightarrow ONSO₃⁻ + H₂O (3.14)

$$
HONO + HSO3 \rightarrow ONSO3 + H2O (3.14)
$$

$$
ONSO3- + HSO3- \rightarrow HON(SO3)22- (3.15)
$$

$$
2HSO_3^- \Rightarrow S_2O_5^{2-} + H_2O \qquad (3.16)
$$

$$
2\text{HNO}_3 \leftrightarrow S_2\text{O}_5 + \text{H}_2\text{O} \qquad (3.16)
$$

HONO + $S_2\text{O}_5{}^{2-}$ + HON $(\text{SO}_3)_2{}^{2-}$ (3.17)

The effect of metal ions (Fe^{3+} , Mn^{3+} , Fe^{2+} , Mn^{2+} , Co^{2+} ,

Figure 3.5. Formation and hydrolysis reactions of $N-S$ compounds.⁷¹⁶

 Cu^{2+}) on this reaction has also been studied.^{726,733} In air-saturated aqueous solutions the reaction rate decreases with increasing [Fen+], whereas in **Ar**saturated solutions no influence of Fe³⁺ was observed.⁷³³ In contrast, increasing $Fe²⁺$ concentration resulted in an increase in the reaction rate when a certain [Fe2+1 is reached.733 Martin et **al.726** observed no influence on the reaction rate when adding Fe3+ or Mn^{2+} .

Nash⁷³⁴ studied the influence of Fe^{2+} , Mn²⁺, and $Cu²⁺$ on the oxidation of sulfur(IV) oxides by nitrogen dioxide. Iron exhibits a strong catalytic effect and it was suggested that iron(II1) is the catalytic active species (see section 3.3.3). Copper and manganese had no catalytic effect. In addition, no catalytic effect of transition metal ions was also reported for the reaction of $S(V)$ with $NO₃⁻⁷²⁶$ and $NO₂⁷³⁷$ In a reverse manner, Ellison and Eckert⁷³⁸ observed no catalytic influence of $NO₂$ on the Fe²⁺- and Mn²⁺catalyzed oxidation of sulfur(IV) oxides (see section **3.3).**

3.3. Homogeneous Catalysis

Three types of mechanisms are discussed in the literature for the transition metal catalyzed oxidation of sulfur(N) oxides: **(1)** nonradical mechaand **(3)** combined nonradical and radical mechanisms,^{151,152,235,465,739-742} (2) radical mechanisms,^{649,743-754} nisms.^{755,756}

In general, the nonradical mechanisms postulate an inner-sphere complexation of the metal ion by sulfite followed by an electron transfer (ET) reaction. In the presence of oxygen, the latter is suggested to bind to the metal sulfito complex.

Most of the published reaction mechanisms for the homogeneous transition metal catalyzed autoxidation of sulfur (V) oxides suggest radical mechanisms that are based on the scheme given by Backström:743

$$
SO_3^{2-} + M^{n+} \rightarrow SO_3^{n+} + M^{(n-1)+}
$$
 (3.18)

$$
SO_3^{\bullet-} + O_2 \rightleftharpoons SO_5^{\bullet-}
$$
 (3.19)

$$
SO_5^{\bullet-} + HSO_3^- \rightleftharpoons HSO_5^- + SO_3^{\bullet-} (3.20)
$$

$$
SO_5^{\bullet-} + SO_3^{2-} \rightarrow SO_5^{2-} + SO_3^{\bullet-}
$$
 (3.21)

$$
SO_5
$$
[•] SO_3 [•] SO_5 [•] SO_3 [•] (3.21)
 SO_5 [•] + HSO_3 [•] $=$ HSO_4 [•] + SO_4 [•] (3.22)

$$
SO_5^{\bullet-} + SO_3^{2-} \rightleftharpoons SO_4^{2-} + SO_4^{\bullet-}
$$
 (3.23)

$$
SO_3^{2-}
$$
 + $HSO_5^ \rightarrow$ HSO_4^- + SO_4^{2-} (3.24)

$$
SO_3^{2-} + SO_5^{2-} \rightarrow 2SO_4^{2-}
$$
 (3.25)

$$
SO_4^{\bullet-} + HSO_3^- \rightleftharpoons HSO_4^- + SO_3^{\bullet-} \quad (3.26)
$$

$$
SO_4
$$
⁻ + SO_3^{2-} \rightarrow SO_4^{2-} + SO_3^{--} (3.27)

Radical scavengers such as mannitol,⁵⁸⁸ tert-butyl inhibit the overall *SCW)* oxidation process (negative catalysis). This can be interpreted as evidence for a alcohol,^{754,757} ethanol,^{743,752,758} and hydroquinone^{752,759,760}

Table 3.6. Theoretical Rate Expressions Obtained from the Backström Mechanism (eqs 3.18-3.27) for

termination step	rate constant k^a	α		
eg 3.25	$k_{3.18}(2k_{ox}/k_{3.25})^{1/2}$	$^{1/2}$	1/2	
eq 3.28	$(2k_{ox}k_{3.18}k_{3.19}/k_{3.28})^{1/2}$	$\frac{1}{2}$		$\frac{1}{2}$
eg 3.29	$k_{3.19} (2k_{ox}/k_{3.29})^{1/2}$	1/2	3/2	0

Table 3.7. Examples of Metal-Sulfito Complexes

free radical chain reaction during the transition metal-catalyzed autoxidation of S(IV) oxides (see also section **3.5.3).** The inhibiting effect of some substances on the autoxidation of **S(IV)** oxides was studied systematically the first time by Bigelow. 640

Using the simple model of Backström,⁷⁴³ eqs 3.18-**3.27,** different theoretical rate expressions can be obtained for the general rate law, if different rate-deter-

$$
-\mathrm{d[SO_3}^2\text{--}1/\mathrm{d}t = k[\text{M}^n\text{--}1^\alpha[\text{SO}_3^2\text{--}1^\beta[\text{O}_2]^2]
$$

mining and termination steps (eqs **3.28-3.30)** for the Backström mechanism are assumed (Table 3.6).
 SO_3 ^{*-} + SO_3 ^{*-} → $S_2O_6^{2-}$ (3.28)

$$
SO_3^{\bullet-} + SO_3^{\bullet-} \rightarrow S_2O_6^{2-}
$$
 (3.28)

$$
SO_3^{\bullet -} + SO_5^{\bullet -} \rightarrow S_2O_6^{2-} + O_2 \qquad (3.29)
$$

$$
SO_3^{\bullet-} + SO_5^{\bullet-} + SO_2^{\bullet} + O_2 \qquad (3.29)
$$

$$
SO_5^{\bullet-} + SO_5^{\bullet-} \rightarrow S_2O_6^{2-} + 2O_2 \qquad (3.30)
$$

3.3.1. Formation of Transition MetaLSulfito Complexes

The transition metal-catalyzed oxidation of sulfur- (IV) oxides follows a complex reaction mechanism with several distinguishable steps starting with the formation of a metal-sulfito complex (see Tables **3.7** and 3.8).^{387,394,445,465,740,770} Meyer⁷⁸³ already proposed the formation of metal-sulfito complexes during the oxidation of $SO₂$ in the presence of iron or manganese. Depending on the [S(IV)], different metalsulfito complexes are formed (Figure 3.6).^{445,770,773}

$$
M^{n+} + mSO_3^{2-} \rightleftharpoons [M(SO_3)_{m-a}]^{n-2(m-a)} + aSO_3^{2-}
$$
\n(3.31)

Recently, Betterton³⁹⁴ studied the pH-dependent

Figure 3.6. Iron(II1)-sulfito complex speciation at pH 2.0, ionic strength $\mu = 0.01$ M.⁷⁵⁶

formation of the iron(II1)-sulfito complexes. He suggested the formation of different $1:1$ iron(III)sulfito complexes:

In the case of the **1:2** iron(II1)-sulfito complex, $Fe(SO₃)₂$, the occurrence of cis- and trans-isomers has been suggested.⁴⁴⁵ A similar concentration dependence for the formation of e.g. iron-sulfate complexes (FeSO₄⁺, Fe(SO₄)₂⁻, FeSO₄[·]HSO₄) is also de- $\rm{scribed~in~the~literature.}^{468,784}$

The formation of metal-sulfito complexes has been reported for many transition metals (see Table **3.7).** On the basis of stability constants for transition metal- sulfito complexes reported in the literature, $465,770$ the following stability order can be given $(\log K \text{ values})$: $\text{FeSO}_3^+(6.6) > \text{CuSO}_3(4.2, 3.62) >$ $NiSO₃(1.33) > CoSO₃(1.28) > FeSO₃(0.77) > MnSO₃$ **(0.48).** By using the stability constants obtained by Roy et **al.,398** the following stability order can be given $(\log K \text{ values})$: $\cos O_3(3.08)$ > $MnSO_3(3.00)$ > $NiSO_3$ **(2.88).** By way of comparison, the stability order of metal-sulfato complexes can be given as (log K values): MnS04 **(2.86)** > NiSO4 **(2.81)** > Cos04 **(2.69)** > FeS04+ **(2.42)** 7 CuSO4 **(2.26)** > FeS04 (2.20).468*486

The calculation of the pH-dependent distribution of copper(1)-sulfito complexes indicates an increase in stability for the **1:2** copper(1)-sulfito complex, $Cu(SO₃)₂³⁻$, with increasing pH.³¹²

For details on the structure and binding of transition metal-sulfito complexes see ref **785.** In principle, a sulfito group can be coordinated to a metal center via the S, 0, or, in a bidentate way, via S and 0 or via two O atoms. Nyberg and Larsson⁷⁸⁶ divide metal-sulfito complexes into three categories: **(1)** complexes without sulfur coordination, **(2)** complexes

with both sulfur and oxygen coordination, and **(3)** complexes with dominant sulfur coordination.

The sulfite ion can be written in two mesomeric forms (see also section **2.1.1):**

The coordination of an 0 atom on a positively charged metal center is more likely for structure I, whereas structure I1 promotes the formation of a metal-sulfur bonded species786 (see also ref **776).**

Due to its stronger electron-donor ability and its higher polarizability, sulfur is more likely to form stronger bonds with metals than oxygen.770 According to Vepřek-Šiška et al. 787 inert metal complexes $(see \nref \n788) \n(e.g. [Fe(CN)₆]3^{-}, [Mn(CN)₆]3^{-}) \nform$ S-bonded and labile metal complexes (e.g. [Fe- $(H_2O)_6]^{3+}$, $[Cu(H_2O)_4]^{2+}$ form O-bonded metal-sulfito complexes. Recent results point at a pH-dependent structure. Metal aqua-hydroxo complexes react fast with $SO_2(aq)$ under formation of O-bonded metalsulfito complexes $(3 \leq pH \leq 8)$. At $pH > 9$ the reaction is much slower (substitution controlled) and results in the formation of S-bonded metal-sulfito complexes.789 See Table **3.7** for the coordination mode of some metal-sulfito complexes.

Carlyle⁵⁰³ as well as Kraft and van Eldik⁴⁴⁵ have considered the possibility of an O-coordination, but suggest on the basis of theoretical considerations, a coordination of the sulfito group via the S atom. Conklin and Hoffmann⁴⁶⁵ suggest a linkage isomerization reaction from 0 to S bonded.

The atmospheric stability and the possible influence of metal- sulfito complexes on atmospheric processes is still unknown. Because of the high content of copper(1) in fog water **(4** to **>90%** of the total copper concentration), Xue et al. 312 suggest that copper(I1) [which is much more stable than copper- (I)] is reduced mainly by sulfite to copper(I), which is than stabilized as a copper (I) -sulfito complex. Conklin and Hoffmann⁷⁷⁰ calculated that at pH 3.5 in aqueous solution 15% of the copper(I1) exists as a copper(I1)-sulfito complex, CuSO3, whereas **77.2%** of the copper(I1) is uncomplexed. At pH **6.3, 98.5%** of the copper(I1) is complexed by sulfite. According to Weschler et al.,⁷⁹⁰ copper and iron will partly exist in the atmosphere as sulfito complexes, whereas manganese and nickel exist only as aqua complexes (see also ref 169). Hoffmann and Jacob⁷⁶¹ propose that in the pH range **1-4** most of the iron, and in the pH range **4-6** most of the manganese ions exist as metal-sulfito complexes in the presence of S(IV). The solubility of some metal complexes as function of the pH is summarized in Table **3.9.**

The formation of a pure iron-sulfito complex in the presence of high chloride concentrations (for the influence of anions on the overall reaction see section 3.5.1) is unlikely according to Bassett and Parker,¹⁵¹ because of the high stability of the iron(II1)-tetrachloro complex, FeC4-. They postulate the formation of a mixed iron-chloro-sulfito complex, e.g. FeC12- *(SO3)-* (see also section **2.2).** Ere1 et al.791 calculate for an atmospheric water sample (pH **3.4)** in the

Table 3.8. Selected Literature on the Formation and Decomposition of Transition Metal-Sulfito Complexes

complex	remarks	ref
	$Co2+$	
[CoSO ₃] $[OC_0OSO_2H O_2]^{-}$, $[OC_0OSO_2O_2]^{2-}$	observed induction period is associated with formation of the complex surface complexation on CoO; complex decomposes under formation of HSO_5^- or $SO52-$, respectively	760 643
$[Co(OH)SO3]^-$	formation of complex is rate-determining step for the autoxidation of $Co(II)$ in the presence of $S(IV)$	771
	Cu^+, Cu^{2+}	
$[Cu(SO3)2]2$	decomposes under formation of Cu ⁺ , $SO_4{}^{2-}$ $S_2O_6{}^{2-}$	151
$[Cu(SO3)2]3-$	in the presence of O_2 formation of $[O_2 \rightarrow Cu(SO_3)_2]^{3-}$, which decomposes under formation of SO_4^{2-}	151
$[Cu(SO3)2]3-$	in the presence of O_2 formation of $[Cu(SO_3)_2O_2]^{2-}$	739
$[Cu(SO3)n]^{2-2n}$	$n = 1-3$, depending on the [S(IV)] and pH; formation of a dimeric complex: $[CuSO3Cu]2+$	740, 770
$[CuSO3]-, [Cu(SO3)2]3-$	stability of complex is pH dependent	312
[CuSO ₃]	stability of complex is pH dependent	312
[$CuO·O2·SO3H$] ⁻ , [$CuO·O2·SO3$] ²⁻	surface complexation on CoO; complex decomposes under formation of $\mathrm{HSO_5}^-$ or $SO52-$, respectively	242
[Cu(HSO ₃) ₂]	formed during the dissolution of CuO in the presence of sulfur (IV) oxides	772
	Fe^{2+} , Fe^{3+}	
$[O_2 \rightarrow Fe(SO_3)_2]^{2-}$	decomposes under formation of Fe^{3+} and $SO_4{}^{2-}$	151
[Fe(SO ₃) ₂]	decomposes under formation of $S_2O_6^{2-}$	151
$[Fe(SO3)n]^{3-2n}$	$n = 1-3$, depending on the [S(IV)]	773
$[Fe(HSO3)]2+$	decomposition under formation of Fe ²⁺ and HSO ₃ [*]	744
$[FeSO3]$ ⁺	electron transfer following inner-sphere complexation	774
$[FeS2O5]+$, $[FeHSO3]2+$	decomposition under formation of Fe^{2+} and SO_3 ⁻⁻	775
$[FeOSO2H]2+, [FeSO3H]2+$	nature of formed iron(III)-sulfito complex depends on the tautomeric forms of bisulfite ion	776
$[FeSO3]$ ⁺	complex formation is rate-determining step	758
$[FeSO3]$ ⁺	complex formation can be followed by an increase and complex decomposition by a decrease in absorbance at 390 nm	387
[$HOFeOSO2$]	complex formation can be followed by an increase and complex decomposition by a decrease in absorbance at 350 nm and 450 nm	465
$[{\rm FeOSO}_2]^-$	surface complexation on $Fe2O3$ colloids in aqueous suspensions	777
$[Fe(SO3)n]$ ³⁻²ⁿ	$n = 1-3$, depending on the [S(IV)] and pH	445
$[FeSO3]+, [FeSO3H]2+$	formation of a 1:1 iron(III)-sulfito complex; formation constant depends on pH, wavelength	394
$[Fe(SO3)n]$ ³⁻²ⁿ	absorbance-time traces $(\lambda = 390 \text{ nm})$ of the complex decomposition exhibit, in the presence of oxygen, an additional step, which is terminated by a characteristic break at the time when all the oxygen in the solution is consumed	752
	\mathbf{Fe}^{6+}	
$[O_3Fe-O-SO_3H]^3$	direct transfer of an oxygen from ferrate(VI) to the sulfur center	778
	Mn^{2+} , Mn^{3+}	
$[O_2 \rightarrow Mn(SO_3)_2]^{2-}$	rapid rearrangement into $[Mn(SO_4)_2]^{2-}$	151
[Mn - $SO2$] ²⁺	4-step mechanism with formation of a $[(Mn:SO_2^{2+})_2 O_2]$ complex	235
$[Mn^{2+}(SO_3^{2-})_3]^{4-}$	formation of complex before catalytic activity	745
$[Mn_2HSO_3]^{3+}$, $[Mn(HSO_3)_2]$	complex reacts with oxygen under formation of OH' and SO4* radicals; minor contribution of $[Mn(HSO3)2]$ on reaction mechanism	755
$[{\rm Mn(HSO_3)_x}]^{2-x}$	complex more favorable for oxidation reaction than $[Mn(SO3)x]^{2-2x}$	779
$[Mn^{2+}(SO_3^-)]$ \rightarrow $[Mn^{3+}(SO_3^{2-})]$	manganese-sulfito radical complex inhibits at pH 10.1 autoxidation of sulfite	780
$[{\rm Mn}_2O$ HSO ₃] ⁺ \rightarrow $[{\rm Mn}_2OH$ (SO ₃) ₂] ⁻	rate-determining step: $MnOH^+ + Mn^{2+} \rightleftharpoons MnOHMn^{3+}$	758
$[MnHSO3]+, [MnSO3Mn]2+$	complex reacts with $Mn(III)$ or SO_5 ⁻ under formation of SO_3 ⁻ radical (pH 2.4); at pH 4 also formation of a bridged Mn(II) dimer complex with the same	750
$[MnSO3]+$	reaction behavior complex decomposes under quantitative formation of dithionate; inner-sphere oxidation process in which free sulfur(V) radicals are not scavenged	781
	$Ni3+$	
$[Ni(O_2)(OSO_2)]$	surface complexation on $Ni2O3$; complex decomposes under formation of $HSO5$	782

presence of oxalate that nearly all of the iron(II1) is complexed by oxalate **(98.7%)** while iron(I1) mainly exists as hexaaqua complex **(95.2%),** followed by the iron(I1)-sulfate complex **(3.2%)** (see also ref **169).**

3.3.2. Decomposition of Transition MetaLSulfito Complexes

The transition metal-sulfito complexes formed in the first step during the overall oxidation of sulfur- (IV) oxides decompose spontaneously under formation of the reduced metal species and sulfite radicals, SO₃^{*-}.^{465,775,789} The rate of decomposition for instance of the iron(II1)-sulfito complexes is in the range of $2 \times 10^{-3} - 0.2$ **s**⁻¹,^{387,465,752,792} and has been studied in detai1.387,751,752,792

For the manganese(I1)-catalyzed oxidation of sulfur(IV) oxides, Berglund et al.⁷⁵⁰ suggest a second pathway at higher pH (pH 4), during which SO_3 ^{*-} is generated parallel to the redox decomposition. For this pathway the formation of a bridged manganese- (11) complex is suggested, which can be attacked by manganese(II1) (compare also with refs **793** and **794):**

Table 3.9. Expected Upper Limit Concentrations for Different Metal Complexes in Atmospheric Droplets **Atmospheric Droplets** $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

	concentration, M			
metallocomplex	pH ₃	pH 4	pH 5	
$Fe(H_2O)6^{3+}$	2×10^{-6}			
$Fe(H2O)5(OH)2+$	1×10^{-5}	3×10^{-6}	5×10^{-8}	
$Fe(H_2O)_{5}(SO_3)^+$	2.2×10^{-6}	6×10^{-6}	1×10^{-6}	
$Fe(H2O)4(OH)(SO3)$		6×10^{-7}	1×10^{-7}	
$Fe(H2O)5(SO4)+$	1×10^{-6}			
$Cu(H2O)62+$	1×10^{-6}	2×10^{-6}	2×10^{-6}	
$Ni(H2O)62+$	2×10^{-6}	2×10^{-6}	2×10^{-6}	
$Mn(H2O)62+$	2×10^{-6}	2×10^{-6}	2×10^{-6}	

$$
MnHSO_3^+ + Mn^{2+} \rightleftharpoons MnSO_3Mn^{2+} + H^+ \quad (3.33)
$$

$$
MnSO_3Mn^{2+} + Mn^3 + \rightarrow 3Mn^{2+} + SO_3^{2-} \quad (3.34)
$$

In the absence of oxygen, the produced SO_3 ⁻ radical

can react via different ways (*k* in M⁻¹ s⁻¹):
\nSO₃[•] + SO₃[•] - S₂O₆²⁻
\n
$$
2k = 3.6 \times 10^8
$$
 (pH 4.3)⁷⁹⁵
\n $2k = 5.0 \times 10^8$ (pH 9.0)⁶⁰⁰
\n $2k = 5.4 \times 10^8$ (pH 9.0)⁷⁹⁶
\n $2k = 6.8 \times 10^8$ (pH 9.8)⁵⁸⁹
\n $2k = 7.2 \times 10^8$ (pH 10.7)⁷⁹⁷
\n $2k = 8.5 \times 10^8$ (pH 5.0)⁷⁹⁸
\n $2k = 1.1 \times 10^9$ (pH 9.8)⁴⁰⁸
\n $2k = 1.4 \times 10^9$ (pH 10.0)⁷⁹⁸
\n $2k = 1.4 \times 10^9$ (pH 10.0)⁷⁹⁸
\n $2k = 1.6 \times 10^9$ (pH 14.0)⁸⁰⁰
\n $2k = 1.9 \times 10^9$ (pH 11.8)⁸⁰¹ (3.28)

$$
2k = 1.9 \times 10^{6} \text{ (pH 11.8)}^{\circ \text{O}} \text{ (3.28)}
$$

SO₃^{•+} + SO₃^{•+} \rightarrow SO₃²⁻ + SO₃ (or SO₂ + SO₄²⁻)

$$
2k = 4.6 \times 10^{8 \text{ 795}} \text{ (3.35)}
$$

$$
2k = 4.6 \times 10^{3} \text{ cm} \quad (3.35)
$$

$$
SO_3^{\bullet-} + S_2O_8^{2-} \rightarrow SO_4^{2-} + S_2O_7^{-} \quad (3.36)
$$

$$
SO_3^{\bullet-} + SO_4^{\bullet-} + SO_4^{\bullet-} + SO_4^{\bullet-} \quad (3.36)
$$

$$
SO_3^{\bullet-} + SO_4^{\bullet-} \rightarrow SO_3^{\bullet-} + SO_4^{\bullet-} \quad (3.37)
$$

In Ar-saturated solutions the recombination of SO_3 ⁻ radicals proceeds by two channels (eqs 3.28 and 3.35) with almost equal probability.795

According to Luňák and Vrepřek-Šiška⁸⁰² the reaction of iron(II) with the SO_3 ⁻ radicals is also a

possible sink for these radicals. Thus, reaction 3.38

$$
Fe^{2+} + SO_3^{\bullet-} \rightarrow Fe^{3+} + SO_3^{2-}
$$
 (3.38)

(see Table 3.11 for rate constants) should inhibit the iron(II1)-catalyzed oxidation of sulfur(IV) oxides, as it has been observed.^{752,803,804} In addition, a similar behavior was observed for the copper(II1) catalysis. Addition of copper(I1) effectively suppressed the reaction rate (copper(II1) as well as copper(I1) as tetraglycine complexes).649 Siskos et al.781 reported for the **manganese(II1)-catalyzed** reaction a small inhibition by manganese(I1). The oxidation of manganese(II) by the SO_3 ⁻ radical has also been proposed:780

$$
Mn^{2+} + SO_3^{\bullet -} \rightleftharpoons [Mn^{II}(SO_3^-)]^+ \rightleftharpoons
$$

\n
$$
[Mn^{III}(SO_3^{2-})]^+ \rightleftharpoons Mn^{3+} + SO_3^{2-} (3.39)
$$

In the presence of oxygen (see section 3.5.2) the reactions 3.38 and 3.39, respectively, are in competition with reaction 3.19, because the $SO₃$ ⁻ radical reacts very fast with the oxygen dissolved in water to form the peroxomonosulfate radical, SO_5 ^{*-}:^{408,646,743,805}
SO₂^{*-} + O₂ \rightarrow SO₂^{*}

$$
SO_3^{\bullet-} + O_2 \rightarrow SO_5^{\bullet-}
$$

\n $k = 1.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ (pH} \approx 1.0)^{799}$
\n $k = 1.2 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ 758}$
\n $k = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ (pH 6.8)}^{646}$
\n $k = 2.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ 605} \text{ (3.19)}$

The possible formation of the superoxide anion, O_2^- , as in reaction 3.40 is unlikely based on experimental results with ascorbate.646

$$
SO_3^{\bullet-} + O_2 \rightarrow SO_3 + O_2^{\bullet-} \qquad (3.40)
$$

Beside the formation of the SO_5 ⁻ radical, the formation of the hydrogenperoxomonosulfate anion, HSO_5^- , also plays an important role in the atmospheric sulfur chemistry⁷⁰⁵ (*k* in M^{-1} s⁻¹): formation of the hydrogenperoxomonosu

HSO₅⁻, also plays an important role is

spheric sulfur chemistry⁷⁰⁵ (*k* in M⁻¹ s⁻

SO₅⁻⁻ + O₂⁻ $\xrightarrow{H_2O}$ HSO₅⁻ + OH⁻ + O₂
 h = 1.0 × 10⁸⁷⁰⁵

$$
SO_5
$$
[•] + O_2 [•] $\xrightarrow{H_2O}$ HSO_5^- + OH^- + O_2
\n $k = 1.0 \times 10^{8705}$
\n $k = 3.3 \times 10^8$ (pH 9.0)⁶⁰⁵
\n $k = 8.0 \times 10^{8806}$ (3.41)

$$
k = 0.0 \times 10
$$
 (3.41)
SO₅⁻ + HSO₃⁻ \rightarrow HSO₅⁻ + SO₃⁻
 $k = 1.2 \times 10^{4.807}$
 $k = 2.5 \times 10^{4}$ (pH 4.9)⁵⁸²
 $k = 3.0 \times 10^{6}$ (pH 6.8)⁶⁴⁶
 $k = 1.3 \times 10^{7}$ (pH 8.7)⁵⁸² (3.20)

$$
SO_5^{\bullet-} + M^{2+} \xrightarrow{H^+} \text{HSO}_5^- + M^{3+} \qquad (3.42)
$$

The SO_5 ⁻ radical as well as the HSO_5^- anion are strong oxidizing agents (see Table **3.5).** Both species, SO_5 ⁻ and HSO_5^- , formed in the presence of oxygen can undergo many reactions which may influence the decomposition of the metal-sulfito complex and the

product formation (see section 3.5.6) (*k* in M⁻¹ s⁻¹):
\nSO₅^{••} + HSO₃[•]
$$
\rightarrow
$$
 HSO₅[•] + SO₃^{••}
\n $k = 2.5 \times 10^4$ ⁸⁰⁷
\n $k = 2.5 \times 10^4$ (pH 4.9)⁵⁸²
\n $k = 3.0 \times 10^6$ (pH 6.8)⁶⁴⁶
\n $k = 1.3 \times 10^7$ (pH 8.7)⁵⁸² (3.20)

$$
k = 1.3 \times 10^{3} \text{ (pH 8.7)}^{\text{cm}} \text{ (3.20)}
$$

SO₅^{•+} + HSO₃[−] → SO₄^{•+} + SO₄^{2−} + H⁺

$$
k = 7.5 \times 10^{4\,582}
$$

$$
k = 4.0 \times 10^{8\,808} \text{ (3.43)}
$$
Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides

\n
$$
SO_5^{\bullet-} + \text{HSO}_3^{-} \xrightarrow{H_2O} 2\text{SO}_4^{2-} + 2\text{H}^+ + \text{OH}^* \quad (3.44)
$$

$$
SO_5^{\bullet-} + SO_5^{\bullet-} \rightarrow 2SO_4^{\bullet-} + O_2
$$

\n
$$
2k = 1.1 \times 10^{7806}
$$

\n
$$
2k = 2.0 \times 10^{8705}
$$

\n
$$
2k = 2.0 \times 10^8 \text{ (pH 6.0)}^{799}
$$

\n
$$
2k = 2.8 \times 10^{8799}
$$

\n
$$
2k = 6.0 \times 10^{8582}
$$
 (3.45)

$$
2R = 6.0 \times 10
$$
 (3.45)

$$
SO_5^{\bullet-} + SO_5^{\bullet-} \rightarrow S_2O_6^{2-} + 2O_2
$$
 (3.30)

$$
SO_5^{\bullet-} + SO_5^{\bullet-} \rightarrow S_2O_8^{2-} + O_2
$$

\n
$$
2k = 1.4 \times 10^{7}{}^{582}
$$

\n
$$
2k = 1.5 \times 10^{8}{}^{601}
$$

\n
$$
2k = 1.9 \times 10^{8}{}^{794}
$$

\n
$$
2k = 2.6 \times 10^{8}{}^{(pH 4.0)^{607}{}^{(3.46)}
$$

$$
2k = 2.0 \times 10^{6} \text{ (pH 4.0)}
$$
 (3.40)
 $SO_5^{\bullet-} + SO_5^{\bullet-} \rightarrow S_2O_{10}^{2-}$
 $2k = 9.3 \times 10^7 \text{ (pH 4.3)}^{809} \text{ (3.47)}$

$$
SO_5^{\bullet-} + O_2^{-} \xrightarrow{H_2O} HSO_5^{-} + OH^- + O_2
$$

\n $k = 1.0 \times 10^{8705}$
\n $k = 3.3 \times 10^8$ (pH 9.0)⁶⁰⁵
\n $k = 8.0 \times 10^{8806}$ (3.41)

$$
HSO_5^- + SO_5^{\bullet -} \xrightarrow{H_2O} OH^{\bullet} + 2SO_4^{2-} + O_2 + 2H^+ \tag{3.42}
$$

$$
HSO_5^- + SO_5^{2-} \rightarrow SO_4^{+-} + SO_4^{2-} + O_2^{+-} + H^+ \tag{3.48}
$$

 $HSO_5^- + HSO_5^- \rightarrow SO_4^{\bullet-} + SO_4^{2-} + O_2^{\bullet-} + 2H^+$ **(3.49)**

$$
(3.49)
$$

\n
$$
HSO_5^- + HSO_3^- \rightarrow 2SO_4^{2-} + 2H^+
$$

\n
$$
k = 3.5 \times 10^2 \text{ (pH 8.0)}^{758}
$$

\n
$$
k = 9.1 \times 10^3 \text{ (pH 2.9)}^{810}
$$

\n
$$
k = 7.9 \times 10^4 \text{ (pH 1.5)}^{810}
$$

\n
$$
k = 2.0 \times 10^4 \text{ (pH 2.5)}^{810}
$$

\n
$$
k = 7.5 \times 10^{7} \text{ 705}
$$

\n(3.50)

$$
k = 7.5 \times 10^{100}
$$
 (3.50)
HSO₅⁻ + OH[•] \rightarrow SO₅^{•-} + H₂O
 $k = 1.7 \times 10^{7}$ (pH 7.0)⁸¹¹ (3.51)

$$
k = 1.7 \times 10^{6} \text{ (pH } 7.0) \quad (3.31)
$$

HSO₅⁻ + SO₄⁻ \rightarrow SO₅⁻ + SO₄²⁻ + H⁺
 $k < 1.0 \times 10^{5} \text{ }^{811}$ \quad (3.52)

The branching ratio of the $SO_5^{\bullet-}$ radical self-reaction, eqs **3.45** and **3.46,** has been determined to be **7(K3.45/** $k_{3.46}$.⁸¹² See Hui et al.⁷⁹⁹ for suggestions on recombination pathways of the *S05'-* radical.

The *SO\$-* radical and the **HS05-** anion are two important oxidizing agents in view of the reoxidation of the reduced transition metal ions (see sections

3.3.4 and **3.3.6** and refs **751** and **752).** The oxidation of e.g. iron(II) to iron(III) by $HSO₅⁻$ (eq 3.53) follows

$$
\text{Fe}^{2+} + \text{HSO}_5^- \rightarrow \text{Fe}^{3+} + \text{OH}^- + \text{SO}_4^{--}
$$
\n
$$
k = 3.0 \times 10^4 \text{ M}^{-1} \text{ s}^{-1} \text{ s}^{13} \text{ (3.53)}
$$

a one-electron transfer reaction according to an innersphere mechanism.⁸¹³ Another possible reaction (eq. **3.54)** is negligible according to experiments per-

$$
Fe^{2+} + HSO_5^- \rightarrow Fe^{3+} + OH^* + SO_4^{2-} \quad (3.54)
$$

formed in the presence of radical scavengers. 814 For reactions of $HSO₅$ with other transition metal ions, see e.g. ref **815.**

For the oxidation of manganese(I1) by the *S05'* radical a mechanism has recently been proposed,⁷⁹⁴ which involves a bimolecular manganese(I1) species (compare also with refs **750, 793,** and **816):**

$$
Mn^{2+} + SO_5^{\bullet-} \to (MnSO_5)^+ \qquad (3.55)
$$

$$
(MnSO_5)^+ \xrightarrow{H^+} Mn^{3+} + HSO_5^-
$$
 (3.56)

$$
(MnSO_5)^+ + Mn^{2+} \rightleftharpoons (MnSO_5Mn)^{3+}
$$
 (3.57)

$$
(\text{MnSO}_5\text{Mn})^{3+} \to \text{Mn}^{3+} + \text{product} \quad (3.58)
$$

For studies on the oxygen consumption during the oxidation of manganese(II), see refs 435 and 817.

The sulfate radical, SO_4 ⁺⁻, formed during the decomposition of the metal-sulfito complexes,⁷⁵⁴ reacts most likely with the sulfite ions present in solution (eq 3.59; $[S(V)] \gg [M^{n+}]$) as indicated by computer simulations of the iron(II1)-catalyzed oxidation of sulfur(IV) oxides⁷⁵² (k in M^{-1} s⁻¹):

SO₄⁻ + HSO₃⁻
$$
\rightarrow
$$
 SO₃⁻ + HSO₄⁻
\n $k = 2.6 \times 10^8$ (pH 7-8)⁵⁹⁹
\n $k = 3.1 \times 10^8$ (pH 9.0)⁸¹⁸
\n $k = 3.8 \times 10^8$ (pH 9.0)⁸⁰⁶
\n $k = 4.6 \times 10^8$ 582
\n $k = 5.3 \times 10^8$ (pH > 7)⁴⁰⁸
\n $k = 5.5 \times 10^8$ (pH 8.0)⁷⁵⁸
\n $k = 6.8 \times 10^8$ (pH \approx 4.0)⁶⁰⁰
\n $k = 7.5 \times 10^8$ (pH 4.8)⁵⁸³
\n $k = 2.0 \times 10^9$ (pH 8.7)⁵⁸²
\n $k = 3.3 \times 10^9$ 808 (3.59)

A second important sink for the SO_4 ⁻ radical has been suggested to be the reaction with the reduced metal ion. (See Table **3.11** for rate constants.) The recombination of the sulfate radical is probably negligible, if the $[S(\text{IV})]$ is in excess⁷⁵² (*k* in M⁻¹ s⁻¹):

Table 3.10. Examples for the M2+-Catalyzed Oxidation of Sulfur(IV) Oxides

	156 Chemical Reviews, 1995, Vol. 95, No. 1		Brandt and van Eldik	
			Table 3.10. Examples for the M^{2+} -Catalyzed Oxidation of Sulfur(IV) Oxides	
	induction period			
\mathbf{M}^{2+}	yes	no	remarks	ref
$Co2+$	$\mathbf x$		induction period depends on $[C_0^{2+}]$, $[O_2]$, $[S(IV)]$	760
	x		induction period depends on $[C03+]$	748
$Fe2+$	x		induction period up to 2 h; pH dependent	826
	x			827
	x		induction period only for slow reactions	738
	x		induction period is the time SO_2 needs for hydrolysis	828
	x		no induction period if Fe ³⁺ is added	829
	x		with increasing the initial concentration of Fe^{3+} the induction period becomes shorter	830
	X		induction period increases with increasing initial pH	660
Mn^{2+}	x		about 2 s	831
	$\mathbf x$		induction period up to 4 min in the presence of succinic acid	619
		x	$pH1-4$	826
	x		no induction period if Mn^{3+} is added	832
	x		induction period depends on initially added [Mn ³⁺]	750
$Ni2+$		x		832

$$
SO_4^{\bullet-} + SO_4^{\bullet-} \rightarrow S_2O_8^{2-}
$$
\n
$$
2k = 3.2 \times 10^{8} \text{ }^{607}
$$
\n
$$
2k = 3.8 \times 10^{8} \text{ }^{799}
$$
\n
$$
2k = 5.4 \times 10^{8} \text{ }^{819}
$$
\n
$$
2k = 6.1 \times 10^{8} \text{ (pH 1.0)}^{820}
$$
\n
$$
2k = 7.2 \times 10^{8} \text{ (pH 0.1)}^{820}
$$
\n
$$
2k = 7.8 \times 10^{8} \text{ (pH 4.8)}^{820}
$$
\n
$$
2k = 8.4 \times 10^{8} \text{ (pH 5.5)}^{821}
$$
\n
$$
2k = 8.9 \times 10^{8} \text{ (pH 4.9)}^{822}
$$
\n
$$
2k = 1.6 \times 10^{9} \text{ }^{823}
$$
\n
$$
2k = 3.6 \times 10^{9} \text{ }^{824}
$$
\n
$$
(3.60)
$$

3.3.3. *M*-Catalyzed Oxidation of Sulfur(1v) Oxides*

Most of the transition metal ions that are important for the oxidation of sulfur(IV) oxides (see Table 4.1) in view of a possible catalytic activity, are only stable in the oxidation state **+2** in aqueous solution. In order to exhibit catalytic activity, these metal ions probably must be oxidized into a higher oxidation state $(+3)$.^{660,771,814,825} Thus, it is reasonable to expect an induction period when a transition metal ion in the oxidation state **+2** is used as catalyst for the oxidation of sulfur(IV) oxides under the conditions that the oxidation of the metal ion itself is slow (Table 3.10). There are several suggestions in the literature to account for the general reaction 3.61 and the associated induction period. Coichev and van Eldik⁷⁴⁸
 $M^{2+} \rightarrow M^{3+} + e^-$ (3.61)

$$
\mathbf{M}^{2+} \rightarrow \mathbf{M}^{3+} + \mathbf{e}^- \tag{3.61}
$$

suggest a direct oxidation of the metal ion via oxygen (eq 3.62), whereas Anast and Margerum⁶⁴⁹ propose

a disproportion reaction (eq 3.63):
\n
$$
M^{2+} + O_2 \rightarrow M^{3+} + O_2
$$
\n(3.62)

$$
2Cu2+ - Cu+ + Cu3+ \t(3.62)
$$

(3.63)

According to Hobson et **al.760** a metal-sulfito complex is formed during the induction period, which is then oxidized: $2 \text{Cu} \rightarrow \text{Cu} + \text{Cu}$ (3.

ording to Hobson et al.⁷⁶⁰ a metal-sulfito comp

ormed during the induction period, which is the

lized:
 $\text{Co}^{2+} + \text{SO}_3^{2-}$ \longrightarrow $\text{Co}^2 \text{SO}_3$ \longrightarrow $\text{Co}^2 \text{CO}_3$ (3.64)

$$
\text{Co}^{2+} + \text{SO}_3^{2-} \xrightarrow{\text{slow}} \text{CoSO}_3 \xrightarrow{+ \text{O}_2 \text{CoSO}_3} \text{O}_3 \qquad (3.64)
$$

3.3.4. Sulfite-Induced Oxidation of M 2+ Ions

In the presence of transition metal ions the sulfur- (IV)-oxygen system exhibits an interesting dualism. Depending on the reaction conditions, this system can function as an oxidant (metal ions in excess) or as a $reduction (S(IV) in excess).$ ^{747,748,829,833-835} A mixture of sulfite and oxygen has a stronger oxidizing potential than oxygen alone.⁸³⁶

In general, the autoxidation of transition metal ions in the **+2** oxidation state is very slow in acidic solution. The oxidation of iron(II) by oxygen at pH **7** is drastically enhanced if the pH is raised by one unit^{837,838} (for mechanistic considerations see e.g. ref 839). In contrast, Diem and Stumm 840 observed nearly no oxidation of manganese(I1) by oxygen within 7 years in aqueous solutions which are homogeneous with respect to manganese(I1) (not oversaturated with regard to $MnCO₃$ or $Mn(OH)₂$) and are sterile (pH = 8.4, $[O_2] = 2.8 \times 10^{-4}$ M). The oxidation rate depends, beside the pH, also on the ionic strength and the ligands coordinated to the metal ion. (For the influence of anions on the oxidation of metal ion, see section **3.5.1.)** In the case of the sulfite-induced oxidation of iron(I1) an increase in the ionic strength (with NaClO₄) from 9.0×10^{-3} M to 1.1×10^{-2} M results in an increase of the halflife of iron(II) from 18 to 38 minutes $(T = 25 \text{ °C}, \text{pH} = 6.84, p_{0_2} = 0.2 \text{ atm}.^{841}$

As mentioned above, the sulfite concentration controls the redox process. *An* excess of sulfur(lV) oxides results in the reproduction of **M3+** ions, which will immediately be reduced again by sulfur(IV) oxides to M^{2+} ions.^{747,748,834} For this redox process, oxygen must be present.^{747,748,752,835} In the case of sulfite-induced oxidation of cobalt(I1) for example, the reaction rate is independent of $[O_2]$, but oxygen is essential for the overall reaction process⁷⁴⁸ (see also ref 835). The sulfite-induced autoxidation of iron-

(II) exhibits the following stoichiometry:⁸³³

$$
2Fe^{2+} + SO_2 + O_2 \rightarrow 2Fe^{3+} + SO_4^{2-} (3.65)
$$

The sulfite-induced oxidation of transition metal ions exhibits a characteristic autocatalytic behavior and an induction period is generally observed (see section 3.3.3). The addition of small quantities of the metal ion in its oxidized form, M^{3+} , enhances the reac-

Transition Metal-Catalyzed Oxidation of Sulfur(lV) Oxides

tion.^{747,748,829} In contrast, Tiwari et al.⁸³³ observed no influence of added iron(II1) on the oxidation rate of the sulfite-induced oxidation of iron(I1). Small amounts of copper(I1) were found to accelerate the oxidation rate (see further Discussion).833

Kinetic analysis of the sulfite-induced oxidation of cobalt(I1) and iron(I1) results in the same empirical rate law, which illustrates the role of the oxidized

$$
k_{\text{obs}} = k_1[M^{3+}]_i + k_2[S(IV)]
$$

metal ion, M^{3+} , 748,829 where $[M^{3+}]_i$ represents the initial concentration of the M3+ ions present in solution. Thus, the autocatalytic process is controlled by the nature and the concentration of the M^{3+} ions and their ability to produce SO_3 ⁻ radicals, which can rapidly react with \overline{O}_2 to produce SO_5 ^{*-} radicals. (See sections **3.3.2** and **3.3.5** for mechanistic details.)

For the autoxidation of cobalt(II) (eq 3.66) in the

$$
2Co^{2+} + 2H^{+} + O_{2} \rightarrow 2Co^{3+} + H_{2}O_{2}
$$
 (3.66)

presence of sulfite Pasiuk-Bronikowska et al.771 found the rate law

$$
d[Co^{2+}]/dt = k_{ox}[Co^{2+}][S(IV)]
$$

with k_{ox} values of 7.7×10^{-2} M⁻¹ s⁻¹ (pH 8.7) and $2.68 \times 10^{-1} \text{ M}^{-1} \text{ s}^{-1}$ (pH 9), respectively. These authors suggest that the formation of a cobalt-sulfito complex (eq **3.67)** is the rate-determining step for the autoxidation of cobalt(II) in the presence of sulfite:
 $CoOH^{+} + SO_{3}^{2-} \rightarrow Co(OH)SO_{3}^{-}$ (3.67)

$$
CoOH^{+} + SO_{3}^{2-} \rightarrow Co(OH)SO_{3}^{-} \qquad (3.67)
$$

The oxidation rate of the reduced metal ion depends on several reaction conditions, e.g. anions present, ionic strength, and pH.

The synergistic effect (see section **3.5.3)** of other added metal ions on the sulfite-induced oxidation of M2+ ions has been studied for example for the autoxidation of iron(II)833,842 and cobalt(II).842 Tiwari et al. 833 studied the influence of copper(II) on the sulfite-induced autoxidation of iron(I1). While the addition of small amounts of copper(I1) enhances the oxidation process, high copper(I1) concentrations inhibit the reaction rate. Tiwari et al. 833 explain this behavior with the equilibria (eqs **3.68** to **3.70)** reported by Cher and Davidson: 843

$$
Cu^{2+} + Fe^{2+} \rightleftharpoons Cu^{+} + Fe^{3+}
$$
 (3.68)

$$
Cu^{+} + O_{2} + H^{+} \rightleftharpoons Cu^{2+} + HO_{2} \qquad (3.69)
$$

$$
HO_2 + Fe^{2+} + H^+ \rightleftharpoons Fe^{3+} + H_2O_2 \quad (3.70)
$$

An increase in the $[Cu^{2+}]$ results in a saturation of the catalytic effect by shifting the equilibrium in eq **3.69** to the left, followed by a change in equilibrium in eq **3.68,** and resulting in the inhibition of the overall iron(II) oxidation rate.833

Coichev et al.842 have studied the synergistic effect of manganese(I1) on the sulfite-induced autoxidation of iron(I1) and cobalt(I1) azide. Their results indicate that manganese(I1) has a significant catalytic effect, but the synergistic effect actually occurs in the

Figure 3.7. Tentative mechanism **for** the cooxidation of bisulfite and bivalent metal ions.844

presence of cobalt(II1) and iron(II1). It is suggested, that these metal ions can oxidize manganese(II) to manganese(III), which rapidly oxidizes sulfite to the SO_3 ^{\div} radicals. The latter radicals initiate the autoxidation process via the formation of *SO\$-* and HS05- (see section **3.3.5** for mechanistic details). The cooxidation of bivalent metal ions and sulfur (IV) oxides is summarized in Figure **3.7.**

3.3.5. The Postulated Overall Reaction Mechanism

Sections **3.3.1** and **3.3.2** give detailed information on the formation and decomposition of transition metal-sulfito complexes during the homogeneously catalyzed oxidation of sulfur (\overline{IV}) oxides. Stoichiometric measurements indicate that the overall reaction can be described by eq 3.71, if SO_4^{2-} is the only $2M^{n+} + S(IV) \rightarrow 2M^{(n-1)+} + S(VI)$ **(3.71)**

$$
2M^{n+} + S(IV) \to 2M^{(n-1)+} + S(VI) \quad (3.71)
$$

oxidation product (see section **3.5.6).649,742,753,845-847** $S_2O_6^{2-}$ is the only oxidation product, a 1:1 stoichiometry is observed:781

observed:⁶¹

$$
M^{n+} + S(IV) \rightarrow M^{(n-1)+} + S(V) \qquad (3.72)
$$

Due to the formation of the *S05'-* radical in the presence of oxygen many reactions are involved in the overall decomposition of the transition metalsulfito complexes. In view of the proposed atmospheric redox cycle of transition metal ions (see section **3.3.6),** the reoxidation of the reduced metal ion into the catalytically active form by *S05'-* or $HSO₅$ ⁻ must be considered. Recently, evidence for the redox cycle of transition metal ions during the catalyzed autoxidation of sulfur(IV) oxides has been reported.^{752,835,848,849} The absorption-time traces of the iron(II1)-catalyzed oxidation of sulfur(IV) oxides exhibit an additional step in the presence of oxygen, which ends with a peculiar break at the time t_{bp} (Figure **3.8).** Measurements with an oxygen-sensitive electrode850 indicate that the break in the curve appears when the oxygen in the solution is nearly consumed.^{751,752} Similar absorbance-time traces have been observed for the nickel(II1)-catalyzed reaction,746 but no explanation for the different absorbance-time traces in the presence and absence of oxygen was offered. Recently, Brandt et al.752 developed a com-

Figure 3.8. Absorbance-time traces of the iron(II1) catalyzed oxidation of sulfur(IV) oxides at pH 2.5 $(\lambda = 390$ nm): (a) in the absence of oxygen (Ar-saturated solution); (b) in the presence of oxygen $\bar{P}(O_2) = 7.5 \times 10^{-4}$ M).⁷⁵²

puter-based model for the iron(II1)-catalyzed oxidation of sulfur (V) oxides, for which the reaction scheme is given below. The simulations indicate that the oxidation of the reduced metal ion into the catalytically active form (M^{3+}) mainly occurs via **SO5*-** radicals or the **HS05-** anion. The regenerated M3+ ions can easily form new metal-sulfito complexes which then decompose again. **This** redox cycle is active as long as oxygen is present in the solution to generate the SO_5 ⁺⁻ species, and can account for the additional step shown in Figure **3.8b.**

The reaction starts with the rapid formation of the metal-sulfito complex, $MSO₃⁺$ or $MSO₃$, followed by the redox decomposition of the complex, which produces the $SO_3^{\bullet-}$ radical (eq 3.74). Complex formation between the reduced metal ion and sulfur (V) is also possible, and the metal-sulfito complex reacts with the *SO3'-* radical. In the absence of oxygen the overall reaction can be described by reactions **3.73- 3.78** and **3.28.** The last one needs to be included in order to account for the formation **of** dithionate, $S_2O_6^{2-}$, which was experimentally observed at different concentration levels (e.g. refs 151, **752, 758,** and **792;** see also section **3.5.6).**

$$
M^{3+} + HSO_3^- \rightleftharpoons MSO_3^+ + H^+ \qquad (3.73)
$$

$$
\mathrm{MSO}_3^+ \rightleftharpoons \mathrm{M}^{2+} + \mathrm{SO}_3^{--} \tag{3.74}
$$

$$
M^{2+} + HSO_3^- \Leftrightarrow MSO_3 + H^+ \qquad (3.75)
$$

$$
3.76
$$
Brandt and van Eldik
MSO₃ + M³⁺ \rightarrow 2M²⁺ + SO₃⁻ (3.76)

$$
MSO3 + M2 \rightarrow 2M-2 + SO3 \t(3.76)
$$

$$
MSO3 + SO32 \rightarrow M3+ + 2SO32- \t(3.77)
$$

$$
M^{3+} + SO_3^{\bullet -} \xrightarrow{H_2O} M^{2+} + SO_4^{2-} + 2H^+ \quad (3.78)
$$

$$
SO_3^{\bullet -} + SO_3^{\bullet -} \rightarrow S_2O_6^{2-} \qquad (3.28)
$$

In the presence of oxygen, the redox cycle is controlled by the formation of the peroxomonosulfate radical, $SO_5^{\bullet-}$ (eq 3.19). This species is a much more reactive oxidant than *02* and may oxidize either sulfite ion (eqs **3.20** and **3.22)** or the reduced metal ion, M2+ (eq **3.79).** The produced sulfate radical, SO_4 ⁻⁻ (eq 3.22) can induce several oxidation processes, e.g. oxidizing either the sulfite ion (eq **3.26)** or the reduced metal ion (eq **3.82).** Because of the excess of sulfur(IV) and M^{n+} (see Tables 1.3 and 1.7 for atmospheric concentrations) the recombination of the SO_4 ⁻ radical (eq 3.60) is unlikely and not included in the reaction scheme. The hydrogenperoxomonosulfate anion, **HS05-** formed in reactions **3.20** and **3.79** together with the **805'-** radical open various reaction pathways that may influence both the decomposition process and the product formation.
 SO_3 ⁺⁺ $O_2 \rightarrow SO_5$ ⁺⁻ (3.19)

$$
\text{SO}_3^{\bullet-} + \text{O}_2 \rightarrow \text{SO}_5^{\bullet-} \tag{3.19}
$$

$$
SO_3^{\bullet-} + U_2^{\bullet-} SO_5^{\bullet-} + HSO_5^{\bullet-} (3.20)
$$

 $SO_5^{\bullet-} + HSO_3^{\bullet-} \to SO_3^{\bullet-} + HSO_5^{\bullet-} (3.20)$

$$
SO_5 + HSO_3 \rightarrow SO_3 + HSO_5
$$
 (3.20)
 $SO_5^{-} + HSO_3^{-} \rightarrow SO_4^{+} + HSO_4^{-}$ (3.22)

$$
SO_5 + HSO_3 \rightarrow SO_4 + HSO_4
$$
 (3.22)
 $SO_4^{\bullet-} + HSO_3^- \rightarrow SO_3^{\bullet-} + HSO_4^-$ (3.26)

$$
SO_4 + HSO_3 \rightarrow SO_3 + HSO_4 \quad (3.26)
$$

$$
HSO_5^- + HSO_3^- \rightarrow 2SO_4^{2-} + 2H^+ \quad (3.50)
$$

$$
SO_5^{\bullet-} + \text{HSO}_3^{\bullet-} \rightarrow 2SO_4^{\bullet-} + 2\text{H}^{\bullet-} (3.50)
$$

 $SO_5^{\bullet-} + SO_5^{\bullet-} \rightarrow 2SO_4^{\bullet-} + O_2^{\bullet-} (3.45)$

$$
M^{2+} + SO_5^{\bullet -} \xrightarrow{H^+} M^{3+} + HSO_5^- \qquad (3.79)
$$

$$
M^2 + 3O_5 \longrightarrow M^2 + 13O_5 \qquad (3.79)
$$

$$
M^{2+} + HSO_5^- \longrightarrow M^{3+} + SO_4^{\bullet-} + OH^- \qquad (3.80)
$$

$$
M^{2+} + HSO_5^- \to M^{3+} + SO_4^{2-} + OH^* \quad (3.81)
$$

$$
M^{2+} + SO_4^{\bullet-} \rightarrow M^{3+} + SO_4^{2-} \qquad (3.82)
$$

$$
M^2 + 5O_4 \rightarrow M + 5O_4 \qquad (3.82)
$$

$$
M^{2+} + OH^* \rightarrow M^{3+} + OH^- \qquad (3.83)
$$

$$
M^{\circ} + OH^{\circ} \rightarrow M^{\circ} + OH \qquad (3.83)
$$

HSO₃⁻ + OH[•] \rightarrow SO₃^{•-} + H₂O \qquad (3.84)

$$
HSO_3^{\dagger} + OH^{\dagger} \rightarrow SO_3^{\dagger} + H_2O \qquad (3.84)
$$

$$
HSO_5^- + OH^{\dagger} \rightarrow SO_5^{\dagger} + H_2O \qquad (3.51)
$$

 $HSO_5^- + HSO_5^- \rightarrow SO_4^{\bullet-} + SO_4^{2-} + O_2^- + 2H^+$ **(3.49)**

$$
(3.49)
$$

SO₃^{••} + SO₅^{••} \rightarrow S₂O₆²⁻ + O₂ (3.29)

As mentioned above, the proposed reaction mechanism is based on a computer modeling of the iron- (111)-catalyzed oxidation of sulfur(IV) oxides in the presence of oxygen.752 Computer modeling plays an

Transition Metal-Catalyzed Oxidation of Sulfur(lV) Oxides

important role in developing the reaction mechanism for complex systems (see e.g. refs **668, 724,851,** and **852).** The limitations of this technique are generally determined by the availability of reliable sets of rate and thermodynamic data.

It should be noted here that some of the reactions included the proposed reaction mechanism as a single step reaction are most likely the composite of various elementary steps. For instance, reaction **3.50** may proceed through a multistep reaction mecha- $\min^{603,810,853-855}$ with the disulfate ion, $\rm S_2O_7{}^{2-},$ as an intermediate (see also section **3.2.1)** and the following reaction sequence: 853

$$
HSO_3^- + HSO_5^- → O_3SOOSO_2^{2-} + H_2O \quad (3.50a)
$$

$$
O_3
$$
SOOS O_2^2 ⁻ + H⁺ \rightarrow O₃SOSS O_3^2 ⁻ + H⁺ (3.50b)
O₃SOOS O_2^2 ⁻ + H⁺ \rightarrow O₃SOSO 3^2 ⁻ + H⁺ (3.50b)

$$
O_3SOSO_3^{2-} + H_2O \rightarrow 2SO_4^{2-} + 2H^+ \qquad (3.50b)
$$

$$
O_3SOSO_3^{2-} + H_2O \rightarrow 2SO_4^{2-} + 2H^+ \qquad (3.50c)
$$

Deister et al.603 proposed a similar reaction mechanism without providing any information on the

formed intermediate (*k* given for 20 °C and pH 2.9):
\n
$$
HSO_3^- + HSO_5^- \rightarrow complex 1
$$
\n
$$
k = 1.02 \times 10^7 M^{-1} s^{-1}
$$
 (3.50d)

 $complex 1 + H^+ \rightarrow complex 2 + H^+$ $k = 0.21$ s⁻¹ (3.50e)

The oxidation of sulfur(IV) oxides by HSO_5^- and other peroxo compounds has recently been studied over a wide pH range $(0-13)$.^{854,855} It is interesting to note, that both sulfur(IV) species, HSO_3^- and **S032-,** exhibit different mechanistic behavior toward the reaction with ROOH $(R = CH_3C(O)$ -, $-O_3S$ -, O_2N -), as shown in reactions **3.85** and **3.86** (see also ref 855). For reaction 3.85 it is assumed⁸⁵⁴ that the SO_3 ²⁻

$$
ROOH + SO32- \xrightarrow{slow} SO42- + H+ + RO-
$$
 (3.85)

**for a start of the fast light of the reaction with ROOH (R = CH₃C(O)-, ⁻O₃S-, O₂N-

), as shown in reactions 3.85 and 3.86 (see also ref

855). For reaction 3.85 it is assumed⁸⁵⁴ that the SO₃²⁻

ROOH + SO_3** $RO^- + SO_4^{2-} + 2H^+$

ion is a good S-nucleophile to attack one of the two oxygen atoms in ROOH or ROO⁻, respectively, with no formation of any intermediate. In contrast, there is kinetic evidence that the oxidation of $HSO₃⁻$ ion proceeds through the formation of at least two intermediates, ROOSO_2 ⁻ and ROSO_3 ⁻, respectively (eq **3.86).854**

The reaction of HSO_3^- with HSO_5^- is subject to general-acid catalysis, and that of the SO_3^{2-} ion $\mathrm{not.}^{855}$

The formation of the metal-sulfito complex is a ligand substitution process (see section **2.2.1).** Recently, kinetic information was obtained from pH dependencies concerning a substitution-controlled **manganese(II1)-catalyzed** oxidation of sulfur(IV) oxides.⁷⁵³ During these reactions intermediate association products are formed. The rate-determining steps are the conversion of these intermediates into manganese-sulfito complexes which undergo fast intramolecular redox decomposition. In general, it remains unknown if possible intermediates have any influence on the overall redox process. They can react with the reactants or with each other, thus affecting the course of the overall reactions. The influence of some anions on the transition metal-catalyzed oxidation of sulfur(IV) oxides has been studied in detail, and show that anions can have an influence on the overall reaction rate (see section **3.5.1).**

In addition, the possible influence of dimeric species [e.g. the Golding dimer (see section $2.1.1$) or μ -oxo and μ -hydroxo bridged metal ions (see section 2.2.1)] is not included in the reaction scheme because of the absence of any reliable kinetic evidence. To the best of our knowledge only one study exists⁵¹¹ that deals with the reactivity of aged metal hydroxides towards the oxidation of sulfur(N) oxides (see Figure **2.6).** During the aging of iron(II1) in aqueous solution, μ -oxo- and/or μ -hydroxoiron(III) dimeric and polymeric species are formed. With increasing time, these dimers and polymers exhibit a decrease in catalytic activity toward the oxidation of $\text{suffix}(\text{IV})$ oxides. The catalytic activity of iron solutions with an initial pH of **3** decreased about **70%** within **100** h.511 It should be noted here, that the aging rate depends on the initial pH of the iron(III) solution.⁵¹¹

Finally, it is still uncertain whether the two isomeric forms of hydrogen sulfite, HSO_3^- and SO_3H^- (see section **2.1.1)** exhibit similar behavior or not. Both forms can act as general acids, but it was suggested that these two forms react quite differently, since $HSO₃⁻$ does not have a pair of electrons available on sulfur for direct transfer to the oxidant.856

3.3.6. *Redox Cycles*

In section **3.3.5** mechanistic details were given for a process that is important for atmospheric relevant redox reactions, viz. the "reproduction" of the oxidant. Kessler 857 already suggested that oxygen transfer during a redox reaction is based on an alternating oxidation and reduction of the catalyst. Beside other oxidants (e.g. HO_2/O_2^- , H_2O_2 , O_3 , and radicals), $sulfur(IV)$ oxides play an important role in the oxidation of metal ions into the catalytically active, higher oxidation state⁸⁵⁸ (see section 3.3.4). In recent literature redox cycles for iron in the atmotions62-864 have been suggested (see also Figure **3.9). ~phere157,683,791,829,835,859-862** and in aqueous solu-

Redox cycles have also been proposed for cobalt- (II), copper(II), and manganese(II).^{157,649,747,748,760,848,849} The possible role of S-N compounds (see section **3.2.5)** in atmospheric redox cycles still remains uncertain. A recent study⁷¹⁶ indicated that some S-N compounds induce or accelerate the autoxidation of manganese(I1) in alkaline medium. It is still unknown whether these reactions also occur in an atmospheric relevant pH range $(2 \leq pH \leq 6)$. Lepentsiotis et al.865 observed that some S-N compounds are able to reduce iron(II1) and manganese- (III) also in slightly acidic medium ($pH \geq 5.5$). The order of reactivity for the reduction of both iron(II1)

Figure 3.9. Atmospheric transition metal redox reactions at a height of 1 km **in a rain drop of 1 mm diameter during the day (a) and at night (b); calculations are based on ion concentrations given in the boxes157 (for iron compare with ref 741; p 12990).**

and manganese(III) is $S(IV) > HAMS > HATS >$ $HADS > DIS₁⁸⁶⁵$

Synergistic reactions (see section **3.5.3)** have not been mentioned in the suggested atmospheric redox cycles, except for the studies of Coichev and van Eldik849 and Sedlak and Hoigne.861 In the former study the synergistic effect of manganese(I1) on the autoxidation of cobalt(I1) in the presence of sulfite has been investigated. Sedlak and Hoigné⁸⁶¹ studied the influence of copper on the redox cycle of iron. For synergistic effects during the sulfite-induced oxidation of transition metal ions, see section **3.3.4.** Copper(I1) and manganese(I1) catalyze the oxidation of i ron(II) in aqueous solution.^{833,843,866,867} Furthermore, in the presence of iron(II1) hydroxide the oxidation of iron(I1) proceeds along two paths: one is the homogeneous reaction occurring in solution and the other is the heterogeneous one taking place on the $iron(III)$ hydroxide.^{561,866} The oxidation of manganese(I1) in aqueous solution is catalyzed by several metal oxides.^{868,869} Davies and Morgan⁸⁶⁹ give the following order for the enhancement of the rate of the manganese(II) oxidation: ν -FeO(OH) > α - $FeO(OH) > SiO₂ > \delta-Al₂O₃.$

The atmospheric redox reactions of iron given in Figure **3.9** indicate a change in the dominating reactions during day and night. The dependence of the atmospheric oxidation processes on meteorological conditions has been discussed earlier (see section **3.1).** During the day as well as during the night the reactions of the HO_2 ⁻ radical and the O_2 ⁻ anion are the most important reactions in the atmospheric redox cycles of iron (Figure **3.9).** Copper as well as iron ions act as much as O_3 , as a sink for HO_2 and O_2 ⁻⁸⁵² (see also ref 861).

In order to obtain more information on the efficiency of atmospheric redox cycles, it is necessary to determine the fractions of the oxidation states for the individual transition metal ions in atmospheric water droplets. ℓ In view of the redox potential of the Fe^{3+}/Fe^{2+} couple a theoretical ratio of $Fe^{3+}/Fe^{2+} \leq 3$ \times 10⁻⁵ in the atmosphere is expected.¹⁶⁹ In rain samples collected in Germany both iron(III) and iron-(II) were found in nearly equal amounts.¹⁶⁹ In fog and cloud water samples collected in California the ratio of Fe(II)/Fe(total) varied between 0.02 and **0.55.791** Fog water samples from Switzerland contained $20-\overline{90\%}$ dissolved iron(II) of the total amount of iron859 (see also ref **181).** In aerosol samples collected in Germany, up to 10% soluble iron(I1) **(6%** of the total iron content) and **75%** soluble iron(II1) were found.⁸⁷¹ The fraction of iron(II) in the aerosol samples was accounted for by Dedik et al.871 in **terms** of a reduction of iron(II1) and a dissolution of iron- (11) compounds from solid aerosols. Zhuang et a1.860 suggested that the high iron(I1) fraction in marine aerosols (average value **49%h)** was due to a photoinduced reduction of iron(II1) (see Figure **3.9** and refs

[#]It should be noted here that the freezing of aqueous samples containing both iron(II) and iron(III) has no effect on the Fe(II)/Fe(III) equilibrium in the pH range $2-5$ **, irrespective of the freezing tem-**

perature.⁸⁷⁰
^{*A*Based on a personal communication from Zhuang concerning an error in the published text,⁸⁶⁰ Zhu et al.⁸⁷² give a mean value of 15%} **for the soluble iron(I1) fraction in the marine aerosols studied by Zhuang et a1.860**

Transition Metal-Catalyzed Oxidation of Sulfur(lV) Oxides

 $872-874$). It should be mentioned that the photoreduction of iron(III) is inhibited by inorganic ions (e.g. Cl⁻, NO₃⁻, SO₄²⁻) and accelerated by organic substances^{791,861,872} (see further Discussion and section 3.5.1). Zhu et al.874 reported that **7.5%** of the soluble iron was in the iron(I1) form in marine mineral aerosols. Hofmann et al.¹⁶⁹ assumed that the nearly equal amounts of iron(II1) and iron(I1) in their rain samples are probably due to the fact that the chemical equilibrium was not established during the rain event.

For the presence of iron(I1) in atmospheric water droplets and aerosols different mechanisms have been proposed, e.g. radical reactions.^{157,859} In the more recent literature, the role of organic ligands, especially oxalate, in the photoreduction of iron(II1) has been discussed.^{181,791,861,862,875} In the presence of contained about 84% s formate (pH 4.25), Pehkonen et al. 875 reported the following order of reactivity for the photoreduction rates of iron(III) oxyhydroxides: amorphous $Fe(OH)_{3}$ $\gg \gamma$ -FeO(OH) $\geq \alpha$ -Fe₂O₃ $\geq \alpha$ -FeO(OH). This reactivity order is suggested to be an indication of the importance of the strength of the Fe-0 bond in the different iron phases. Therefore the presence of ligands and the distribution of different iron complexes in atmospheric water droplets and aerosols is of importance (see section 3.5.1).

In addition, pH plays an important role in the iron- $(III)/iron(II)$ distribution. Kotronarou and Sigg¹⁸¹ observed that more than 80% of the dissolved iron was in the oxidation state $+2$ in fog water samples when the pH of the sample was below *5.*

On the basis of the data given above, it is not possible to comment on the efficiency of atmospheric redox cycles for iron. The redox cycle of iron shown in laboratory experiments^{751,752,835} cannot be simply extrapolated to atmospheric conditions, since the interaction with other dissolved reactive species can affect the efficiency of the overall redox cycle. Anions can significantly change the redox behavior of transition metal ions (see section 3.5.1).

Table 3.11 summarizes the rate constants for oxidation reactions of some transition metal ions that are most probably of atmospheric relevance.

3.4. Heterogeneous Catalysis

3.4.1. Atmospheric Aspects

Aerosols (see section 1.2) as well as suspended metal oxides and hydroxides in atmospheric water droplets can function as catalysts in atmospheric redox processes. The heterogeneously catalyzed oxidation of sulfur(IV) oxides is slower than the homogeneous one (see further Discussion and ref 511), but the distribution (soluble versus insoluble) and the factors that influence this distribution remain uncertain (see further Discussion). Thus, the contribution **of** heterogeneous catalysis to the overall oxidation processes of sulfur (IV) oxides remains uncertain.

According to Graedel and Weschler¹⁸⁷ and Weschler et al.,790 the contribution of iron to the homogeneous transition metal-catalyzed oxidation in the atmospheric relevant pH range $(4-6)$ is negligible in comparison to other metals, because of the low solubility of iron hydroxides (see also refs 756, 905, and 906).

In the atmosphere 80-90% of the manganese and $60-75\%$ of the iron are in a dissolved form.^{168,907} In rain samples from Northern Nigeria, Beavington and Cawse¹⁷⁷ found only 16% of the iron in a dissolved form, whereas 61-96% of cobalt, copper, manganese, and zinc were present in a soluble form. Rain samples collected in the United States contained 42% insoluble iron.⁹⁰⁸ Approximately $60-75\%$ of the iron and 80-93% of the manganese were dissolved in rain samples collected in Germany;176 83% of the iron in precipitation collected at the sea coast in western France was insoluble.⁹⁰⁹ Fog water from Switzerland contained $30-80\%$ dissolved iron and $50-100\%$ dissolved copper.¹⁸¹ In marine aerosol particles collected in Barbados, only 1% of the total iron was in a soluble form.872 *An* aerosol sample collected in Germany contained about 84% soluble iron. The remaining iron consisted mainly of Fe₃O₄ (7.6%) and Fe₂O₃ (5.5%) .871 In rain samples from Germany, 40-60% of the detected iron was in the form of fine or coarse particles. This fraction is attributed to polyhydroxo species of iron(III).¹⁶⁹ In contrast, in the case of other metal ions, e.g. Mn^{2+} and Cu^{2+} , the hydrated forms predominated in these samples.¹⁶⁹ The solubility of metals in aerosols and other samples is summarized in Table 3.12.

Giusti et al.⁹¹⁹ pointed out in a review that the most important factors controlling the soluble/insoluble phase distribution are the nature (i.e. the source) of the particles and the pH of atmospheric water droplets during the various stages of atmospheric transport. Anthropogenic and marine sources are generally associated with a higher percentage of soluble phases than crustal sources. Theis and Wirth⁹¹⁷ showed that pH is the major factor controlling the yield of dissolved metal ions from fly ash samples (see Table 3.12b). The amount of dissolved metal ions increased with increasing acidity. According to Gatz and Chu914 the fraction of soluble and insoluble metal compounds in rain water samples depends not only on the pH and the rainfall quantity but also on the fraction of insoluble matter itself. The metal solubility decreases with increasing concentration of the total insoluble mass (TIM). TIM tends to remove ions from solution through some sort of sorption processes.⁹¹⁴ Furthermore, the sampling technique has an important influence on the fraction of soluble and insoluble mass in the sample (Table 3.12). From Table 3.12 it is evident that the concentrations of insoluble metals are much higher in rain samples collected as bulk sample (wet and dry deposition; see section 1.4) than in samples collected in a wet-only sampler (see also ref 920).

The leaching of metals (see Table 3.12b) from fly ash samples by HCl and some organic chelating agents has been shown to be very effective. In the presence of 0.5 M HCl, 60-70% of total Cu, Fe, Mn, Ni, and Zn was leached within the first 24 h.⁹¹¹ Sequeira⁹²¹ pointed out that the experimentally obtained solubility is generally found to be several orders of magnitude larger than that based on the thermodynamic data. For instance, the experimental solubilities for goethite $(FeO(OH))$ and albandite (MnS) are 24 and 3.0 \times 10⁴ μ g L⁻¹, whereas the theoretical values are 2.9×10^{-4} and 12 μ g L⁻¹,

Table 3.11. Rate Constants of Oxidation Processes of Iron(II), Manganese(II), and Copper(I,II)

reaction	k	remarks	ref
$Fe^{2+} + SO_3^{\bullet -} \rightarrow Fe^{3+} + SO_3^{2-}$	9.8×10^6 M ⁻¹ s ⁻¹ 1.4×10^7 M ⁻¹ s ⁻¹	pH 4.0 $pH = 4.0$; formation of an intermediate, $\text{Fe}^{2+} \cdot \text{SO}_3$, suggested with $K = 770 \text{ M}^{-1}$	605 794
$Fe^{2+}SO_3^{2-} + SO_3^{--} \rightarrow Fe^{3+} + 2SO_3^{2-}$	3.2×10^6 M ⁻¹ s ⁻¹ 3.9×10^6 M ⁻¹ s ⁻¹	$pH = 4.0$ $pH = 4.0$	605 794
$Fe^{2+} + SO_4$ ^{*-} $\rightarrow Fe^{3+} + SO_4$ ²⁻	9.9×10^8 M ⁻¹ s ⁻¹ 4.0×10^7 M ⁻¹ s ⁻¹	$T = 20$ °C; multistep reaction: $\text{Fe}^{2+} + \text{SO}_4$ ⁻⁻ $[Fe^{II}SO_4]^+ \rightarrow [Fe^{II}SO_4]^+ \rightarrow Fe^{3+} + SO_4{}^{2-}$	876 822
$\text{Fe}^{2+} + \text{SO}_4 \rightarrow \text{K} \stackrel{k_2}{\longrightarrow} \text{products}$	3.0×10^8 M ⁻¹ s ⁻¹	$T = 20$ °C; $k_2 = 6.5 \times 10^3$ s ⁻¹	877
$\text{Fe}^{2+} + \text{SO}_5$ ⁻⁻ $\overset{\text{H}_2\text{O}}{\longrightarrow} \text{FeOH}^{2+} + \text{HSO}_5$ ⁻	8.0×10^5 M ⁻¹ s ⁻¹ 3.56×10^4 M ⁻¹ s ⁻¹	estimated value pH 4.0	878 807
$Fe^{2+} + HSO_5^- \rightarrow Fe^{3+} + OH^- + SO_4^-$	3.0×10^4 M ⁻¹ s ⁻¹ 3.56×10^4 M ⁻¹ s ⁻¹	one-electron transfer reaction $pH = 4.0$	813 807
$Fe^{2+} + S_2O_8^{2-} \rightarrow Fe^{3+} + SO_4^{2-} + SO_4^{+}$	$12 M^{-1} s^{-1}$	$pH = 2.4$; $T = 22$ °C; negligible effect of adding iron(III)	814
	$26~\mathrm{M^{-1}\ s^{-1}}$	$T = 25$ °C, $\mu = 0.1$ M	652
$Fe^{2+} + Cl_2^{\bullet-} \rightarrow Fe^{3+} + 2Cl^-$	1.0×10^7 M ⁻¹ s ⁻¹ 4.0×10^6 M ⁻¹ s ⁻¹	$pH = 1.0$; $T = 25 °C$; outer sphere $pH = 1.0; T = 25 °C;$ inner sphere	879 879
$Fe^{2+} + OH' \rightarrow Fe^{3+} + OH^{-}$	2.3×10^8 M ⁻¹ s ⁻¹	$pH = 1.0$; independent from temperature in the range $17-67$ °C	880
	3.2×10^8 M ⁻¹ s ⁻¹	$pH = 7.0$; H abstraction; probably no outer-sphere mechanism	449
	4.3×10^8 M ⁻¹ s ⁻¹ 3.0×10^9 $\rm M^{-1}$ $\rm s^{-1}$ 5.0×10^9 M ⁻¹ s ⁻¹	$pH = 3.0; T = 20 °C;$ temperature dependent	881 876 882
$Fe^{2+} + O_2$ + $\overline{2H_2O}$ $Fe^{3+} + H_2O_2 + 2OH^-$	1.0×10^7 M ⁻¹ s ⁻¹	$pH = 6.8; T = 25 °C$	883
$\text{Fe}^{2+} + \text{HO}_2 \cdot \frac{\text{H}^+}{\text{H}^+} \text{Fe}^{3+} + \text{H}_2\text{O}_2$	1.2×10^6 M ⁻¹ s ⁻¹	$pH = 1.0; T = 25 °C;$ at $pH < 4 k_{obs}$ independent from $[O_2]$	883
$Fe^{2+} + HO_2^{\bullet} \rightarrow Fe^{3+} + HO_2^-$	$2.1\times10^6\,\mathrm{M^{-1}\ s^{-1}}$	$pH = 0-2.1$; presence of $O2$	884
$\text{Fe}^{2+} + \text{HO}_2 \rightarrow (\text{Fe}^{III} \text{HO}_2)^{2+} \stackrel{k}{\rightarrow} \text{Fe}^{3+} + \text{HO}_2$	1.8×10^3 s ⁻¹	$T = 25$ °C; formation of a bridged compound: $(Fe^{III}HO_2)^{2+} + Fe^{2+} \rightleftharpoons [Fe^{III}HO_2Fe^{II}]^{4+} \stackrel{k_2}{\longrightarrow}$ $Fe^{3+} + Fe^{II}OH_2$ ⁺ , which decomposes with $k_2 = 2.5 \times 10^4 \text{ s}^{-1}$	885
$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^+ + OH^-$	41 $M^{-1} s^{-1}$ $48 M^{-1} s^{-1}$ $51 M^{-1} s^{-1}$ $65~\mathrm{M^{-1}~s^{-1}}$ $76~\mathrm{M^{-1}~s^{-1}}$	$T = 20 °C$; in 0.1 M HClO ₄ $T = 25$ °C, $\mu = 1.0$ M $T = 20 °C$; in 0.4 M H_2SO_4 $T = 25 °C$; $\mu = 3.0 M$; iron(II) in large excess	886 485 886 526 701
$Fe^{2+} + O_2 \rightarrow Fe^{3+} + O_2^-$	1.6×10^{-7} s ⁻¹	$pH = 5.0; T = 25 °C$	838
	8.1×10^{-6} s ⁻¹	$pH = 6.0; T = 25$ °C	838
	$6.4\times10^{-5}~\mathrm{s}^{-1}$ $1.7\times10^{-3}\;\mathrm{s}^{-1}$	$pH = 6.5$; in sea water $pH = 7.6$; in sea water	887 887
	$1.4 M^{-1} s^{-1}$	$pH = 3.0; T = 25 °C$	888
$Fe^{2+} + O_2 \rightarrow$ products	1.2×10^{13} M ⁻² atm ⁻¹ min ⁻¹	$pH = 6.84$; $T = 25 °C$; $\mu = 0.11 M$; $p_{O_2} = 0.2$ atm	841
	2.9×10^{13} M ⁻² atm ⁻¹ min ⁻¹	$pH = 6.84$; $T = 25 °C$; $\mu = 0.02$ M; $p_{O_2} = 0.2$ atm	841
	1.4×10^{14} M ⁻³ s ⁻¹ $1.6 \times 10^{14} \rm \ M^{-3} \ s^{-1}$	$p\bar{H} = 6.5$; $T = 25$ °C; $\mu = 0.11$ M; presence of 0.1 M SO_4^2 ⁻	889
	2.0×10^{14} M ⁻³ s ⁻¹	$pH = 6.5; T = 25 °C; \mu = 0.11 M;$ presence of 0.1 M Cl- $pH = 6.5; T = 25 °C; \mu = 0.11 M;$	889 889
	2.4×10^{14} M ⁻³ s ⁻¹	presence of $0.1 M NQ_3^-$ $pH = 6.5; T = 25 °C; \mu = 0.11 M;$	889
		presence of 0.1 M $ClO4$	
$Fe^{2+} + O_3 \rightarrow$ products	1.7×10^5 M ⁻¹ s ⁻¹	$T = 25 °C; \mu = 3.0 M$	526
	${\geq}5.0\,\times\,10^5\ M^{-1}\ \rm s^{-1}$ 8.2×10^5 M ⁻¹ s ⁻¹	$pH = 2.0; T = 22 °C$ $pH = 0-2; T = 25 °C$	592 890
$Mn^{2+} + SO_4$ ⁻ \rightarrow $Mn^{3+} + SO_4$ ²⁻	1.6×10^7 M ⁻¹ s ⁻¹	average of 3 rate values; rate independent from $[H_2SO_4]$ in the range $2-10$ M	891
	3.0×10^7 $\mathrm{M^{-1}}$ $\mathrm{s^{-1}}$ $1.8 \times 10^{10} \rm \ M^{-1} \ s^{-1}$	$pH = 3.0$ estimated value	892 893
$\text{Mn}^{2+} + \text{SO}_4$ ⁻ \rightarrow X $\stackrel{\kappa_2}{\rightarrow}$ products	8.3×10^7 M ⁻¹ s ⁻¹	$T = 20$ °C; $k_2 = 4.5 \times 10^4$ s ⁻¹	877

Table 3.11. (Continued)

respectively. However, during the lifetime of aerosols (see Table 1.9) a certain amount of metal ions can be leached from the TIM by acids or organic substances, and participate in homogeneous transition metal-catalyzed oxidation processes. Recently, **Caki**ci et al.⁷⁷² reported that copper (II) oxide dissolves completely in water saturated by sulfur dioxide.

3.4.2. Mechanistic Aspects

Metal oxides play an important role in the industrially employed heterogeneously catalyzed autoxidation of $\text{suffix}(IV)$ oxides, e.g. the production of sulfuric acid with the help of vanadium pentoxide as catalyst. In general, metal oxides exhibit different catalytic activity (Figure 3.10), which is probably related to the different bond strengths of oxygen to the metal surface. The catalytic activity of a metal oxide increases with decreasing energy of the metaloxygen bond.⁹²³ Prasad et al.²⁴² observed no significant oxidation of sulfur(IV) oxides using $SiO₂$ or CuO as catalysts in the absence of oxygen. In addition, Bhagava et al.924 found no oxidation of sulfite in aqueous suspensions of MgO in the absence of oxygen, although the rate of oxidation was found to be the same in air and oxygen-saturated solutions (see Table 3.18).

For the heterogeneous oxidation of sulfur (IV) oxides, it is assumed that both oxygen and sulfur(IV) are adsorbed on the surface of the metal oxide.^{242,777,925}

In addition to the monodentate surface complex (eq **3.871,** the formation of a bidentate complex is also possible777 (see also ref **786):**

$$
F_{PQ}^{OH} + HSO_3^- \stackrel{H^+}{\longrightarrow} \longrightarrow F_{PQ}^{O}S - O + H_2O \qquad (3.89)
$$

Furthermore, Kent et al.⁹²⁶ observed three different surface species in their study of the adsorption of $SO₂$ on CuO.

Table 3.12. Aerosol Solubility and Leaching of Metale (see also ref 910)

(b) pH Dependent Leaching of Transition Metals

^a Calculated by arithmetic mean. ^b Not traceable. ^c Mean value from six precipitation events. ^d 83% Mn were water + acid leachable. ^c Water soluble. *f* With 0.08 M HNO₃. *š* With 1 M HNO₃. ^h Buffered; 370

In contrast to the homogeneous catalysis by transition metals, it is more difficult to present a general reaction mechanism for the heterogeneously catalyzed oxidation of sulfur(IV) oxides, mainly due to the limited information on the adsorption and redox activities of different surface sites. These activities

Figure 3.10. Catalytic activity of some metal oxides for the oxidation of $NH₃$ (expressed as the temperature required to oxidize 5% of the $NH₃$) (taken from ref 922).

probably depend on the nature of the metal oxide or hydroxide studied (see further Discussion). In the following proposed mechanism,925 different surface sites were not considered:

$$
M_xO_y + O_2 \rightleftharpoons M_xO_yO_2 \tag{3.90}
$$

$$
M_xO_yO_2 + HSO_3^- \rightleftharpoons M_xO_yO_2SO_3H^-
$$
 (3.91)

$$
M_xO_y \cdot O_2 + SO_3^{2-} \rightleftharpoons M_xO_y \cdot O_2 \cdot SO_3^{2-} \quad (3.92)
$$

$$
M_xO_yO_2SO_3H^- \to M_xO_y + HSO_5^-
$$
 (3.93)

$$
M_xO_yO_2SO_3H^- \to M_xO_y + HSO_5^-
$$

$$
M_xO_yO_2SO_3^{2-} \to M_xO_y + SO_5^{2-} \tag{3.94}
$$

$$
M_xO_yO_2SO_3^{2-} \to M_xO_y + SO_5^{2-}
$$

$$
HSO_5^- + S(IV) \to 2S(VI) \tag{3.95}
$$

$$
SO_5^{2-} + S(IV) \rightarrow 2S(VI) \qquad (3.96)
$$

$$
SO_5^{2-} + S(IV) \rightarrow 2S(VI) \qquad (3.96)
$$

In contrast to the mechanism given above (eqs 3.90-3.96), Kim and Choi⁹²⁷ suggested that SO_2 appears to be adsorbed essentially on the 0 lattice (of α -Fe₂O₃) as a molecular species, whereas O₂ is adsorbed on an 0 vacancy as an ionic species (Q_2^-) .

In the case of mixed particles (e.g. atmospheric dust, fly ashes) the composition of the investigated samples (see Table 1.10) is a dominant factor that influences the overall redox process, since synergistic effects complicate the situation.

On the basis of the adsorption behavior of $SO₂$ on hematite, α -Fe₂O₃, Faust and Hoffmann⁸⁷⁴ suggested the existence of two different adsorption sites on the surface with two different adsorption constants. In addition, spectroscopic investigations of the surfaces of α -, β -, and γ -FeO(OH) exhibit differently bound surface hydroxyl groups⁹²⁸ and therefore probably different adsorption activities. In contrast to α - and β -FeO(OH), γ -FeO(OH) only has one type of surface hydroxyl groups.928

Two types of mechanisms for the heterogeneous catalysis are reported in the literature. In the one, the catalytic activity of particles during the oxidation of sulfur(IV) oxides is mainly ascribed to surface catalysis, $242,782,929-931$ whereby sulfur and/or oxygen are adsorbed on active surface centers. In the other, the catalytic activity of particles is suggested to be

Table 3.13. SO2 Adsorption Capacities of Different Metal Oxides as a Function of the Relative Humidity⁹³⁴

		ed Oxidation of Sulfur(IV) Oxides	Table 3.13. SO_2 Adsorption Capacities of Different Metal Oxides as a Function of the Relative Humidity ⁹³⁴	Q $% \mathcal{N}$ relative humidity $(\%)$ $\begin{array}{c} \text{surface area} \\ (m^2\,g^{-1}) \end{array}$ $_{\rm metal}$ oxide ъ	$_{\rm{MgO}}$ $\pmb{0}$ $\overline{\mathbf{4}}$ $12\,$ $50\,$ $\bf 95$ 400	$27.3\,$ $0.6\,$
ᠲ $\rm Fe_2O_3$ $\pmb{0}$ 1.2 50 Al_2O_3 $\pmb{0}$ 215						${\bf 17}$ 109 $\overline{\mathbf{4}}$ 78 $320\,$
Chemical Reviews, 1995, Vol. 95, No. 1 165 n SO_2 adsorption capacity (mg of SO_2/g of metal oxide) V_2O_3 Mn_2O_3 Co_3O_4 CuO $\frac{25}{5}$ $\overline{110}_2$ \overline{Cr}_2O_3 \overline{Fe}_2O_3 NiO $\overline{2n0}$ $53\,$ Oxide 95 lytic activity of some metal oxides for H_3 (expressed as the temperature re- % of the NH ₃) (taken from ref 922). MnO ₂ $\bf{0}$ ${\bf 25}$ ${\bf 58}$						>530 mainly due to leached metal ions (homogeneous

mainly due to leached metal ions (homogeneous catalysis, see section **3.3).210~239~906~913~g32~933** For leaching of metal ions from fly ashes see e.g. refs 910, 911, and 917 and Table 3.12.

By using atmospheric dust as a catalyst for the oxidation of sulfur(IV) oxides, Rani et al.²¹⁰ observed at the beginning of the reaction an induction period (see section 3.3.3) which was suggested to be due to a slow surface catalysis. Due to the leaching of metal ions, the slow surface catalysis is overtaken in time by faster homogeneous catalysis. According to Zhang and Millero⁹⁰⁶ only dissolved iron is catalytically active during the oxidation of $\text{suffix}(IV)$ oxides in sea water, whereas colloidal iron exhibits no catalytic activity. This is in agreement with results of Grgi6 et al.,⁹⁰⁵ who observed no catalytic effect of iron(III) on the oxidation of sulfur(IV) oxides at a pH larger than 6 (see also ref 756). Comparative studies by Prasad et al.²⁴² on the CuO and Cu(II) catalysis provide evidence for both homogeneous (by dissolved copper(I1) ions) and heterogeneous (surface catalysis) contributions during the heterogeneous CuO-catalyzed oxidation of sulfur(IV) oxides. Gupta et al.⁹³³ suggested the contribution of the surface catalysis to be in the range of $13-34\%$ during the heterogeneous autoxidation of $\text{suffix}(IV)$ oxides in mineral and stone suspensions. The contribution of the homogeneous catalysis by dissolved metal ions is 66-86%. By using soot particles as catalyst Grgić et al.⁹¹² found at pH 3.9 the same rate constant as for the iron(II1) catalyzed oxidation of sulfur (IV) oxides under the same experimental conditions.

Metal oxides exhibit different adsorption capacities for $SO₂$ as a function of the relative humidity (Table 3.13). The relative humidity is a major factor in controlling the oxidation rate of sulfur(IV) oxides in the heterogeneously catalyzed oxidation process⁹³⁵ (see also Table 3.13). For mineral dusts (silcates and calcites), a SO_4^{2-} formation rate of 25-150 mg of SO_4^{2-} (g of mineral)⁻¹ ([SO₂] = 0.86 ppm, reaction time **1-5** days, relative humidity **85%)** was reported by Mame and Gottlieb.⁹³⁶ For fly ash, values of 220 mg of SO_4^{2-} (g of fly ash)⁻¹ (pH 4.7) up to 600 mg of SO_4^{2-} (g of fly ash)⁻¹ (pH 6) were found.⁹³⁵

The surface pH is a dominating factor for the overall reaction rate.⁹³⁴ Due to the formation of H⁺ ions during the redox process, the oxidation rate

slows down with time, since the sulfur (V) oxides are less soluble in acidic solution (see section **2.1).**

Selected literature on the heterogeneously catalyzed oxidation of sulfur(IV) oxides is summarized in Table **3.14.**

3.5. Miscellaneous Effects

The reaction mechanism given for the homogeneous catalysis by transition metals during the oxidation of sulfur(IV) oxides is only valid under ideal reaction conditions, considering no influence by e.g. anions (section **3.5.1)** or other metal ions (section **3.5.3).** In addition, the ionic strength (section **3.5.2)** and the initial pH of the reaction solution (section **3.5.5)** were reported to affect the reaction. In view of an autoxidation process, the initial oxygen concentration (section **3.5.4)** may have a certain influence. All the parameters mentioned influence the product formation and/or the product distribution (section **3.5.6).**

3.5.1. *Influence of Anions and Organic Compounds*

The reaction rate of the transition metal-catalyzed oxidation of sulfur(IV) oxides depends on the ligand substitution rate of the metal ion and the stability of the produced complex, the possible translabilization effect of coordinated ligands, and the effect of coordinated ligands on the redox potential of the M^{3+} / **M2+** system.

The effects of chloride (sea spray), sulfate and dithionate (oxidation products), and acetate and formate (buffer species present in atmospheric water droplets (see Table **1.17)** on the transition metalcatalyzed oxidation of sulfur(IV) oxides will be discussed here due to their mechanistic and atmospheric relevance.

Chloride and sulfate are the most important watersoluble components of atmospheric aerosols^{180,216} and have been found in high concentrations in rain water 37,169,327 and cloud and fog droplets^{179,180,947} (see Table **1.16** for sulfate concentration). In rain water samples collected in northeastern Bavaria (Germany) the contribution of Cl^- , NO_3^- , and SO_4^{2-} to the total anionic equivalent per cubic meter was found to be **15.8, 39.1,** and **45.1%,948** respectively (see also ref **949).** *As* mentioned in section **1.5,** acetic and formic acid are the most important organic acids that have an influence on the acidity of wet precipitation. The reported influence of acetate and formate (Table **3.15)** is mostly based on data for the influence of the buffer concentration on the reaction rate.'

The possible influence of anions can be studied in two different ways, viz. by using different salts of the same transition metal (e.g. $MnCl₂$ and $MnSO₄$) or by addition of the anion in the form of its alkali or earth *alkali* metal salt. For the possible influence of cations see refs **584, 755, 956,** and **957.**

Meyer⁹⁵⁸ already described that different salts of one transition metal ion exhibit different catalytic activities in the oxidation of sulfur(IV) oxides. The chloride salts of iron and cobalt exhibit a slightly higher catalytic activity than the sulfate salts, whereas

^{&#}x27;It should be noted here, that the oxidative degradation of organic acids during the oxidation of sulfur(IV) **oxides is accelerated by the presence** of **iron, cobalt, and nickel, and decreased by manganese and halides (ref 893 and literature cited therein). Possible effects of this pathway on the overall oxidation process** of **sulfur(IV) oxides are not treated in the further discussion.**

Table 3.15. Influence of Anions on the Oxidation of Sulfur(IV) Oxides

in the case of manganese catalysis, the sulfate salt was reported to have a higher catalytic activity than the chloride salt.958 In recent literature the catalytic activity of different salts of one transition metal has been studied e.g. for copper(II), manganese(II), and iron(III). Conklin and Hoffmann⁷⁴⁰ found a higher $sulfur(IV)$ oxidation rate when copper(II) chloride instead of copper(I1) sulfate was used. In contrast to Bassett and Parker,¹⁵¹ who reported a much higher catalytic activity for manganese(I1) sulfate than for manganese(I1) chloride, Huss et a1.826 observed no difference in the reaction rate when manganese(I1) chloride or manganese(I1) sulfate were used. **A** comparison of the catalytic activity of different iron-

(111) salts indicated that iron(II1) chloride had the highest and iron(III) sulfate the lowest activity.⁵¹¹ The purity of the salt is very important in such studies, since trace impurities can cause synergistic effects (see section **3.5.3)** that may overrule the anion

The influence of different metal salts has also been studied for the heterogeneous catalyzed oxidation of sulfur(IV) oxides. Cheng et al.⁹⁴⁵ reported a higher catalytic activity for manganese(I1) sulfate than for manganese(I1) chloride aerosols. In a study of the catalytic activity of different manganese(I1) and $copper(II)$ aerosols, Berresheim and Jaeschke²³⁹ observed the highest catalytic activity for the nitrate

salts (see also Table 4.1).

The influence of Cl^- and $SO_4{}^{2-}$ on the uncatalyzed and on the homogeneously catalyzed oxidation of sulfur(IV) oxides is summarized in Table 3.15. The influence of $S_2O_6^{2-}$ has only been studied in a few cases.

The influence of anions on the oxidation process of $sulfur(IV)$ oxides can basically be accounted for in terms of (1) the anion acting as radical scavenger, (2) the anion functioning as competitive ligand at the metal center, (3) coordinated anions accelerating or inhibiting the reoxidation process of the reduced metal ion, and **(4)** translabilization effects by coordinated anions.

It has been suggested in the literature that anions can function as radical scavengers^{181,581,589,756} and, if a free radical mechanism is operative, can inhibit the reaction rate. Cl⁻ for instance reacts fast with the SO_4 ⁻⁻ radical (eq 3.97), but the Cl[•] product can

probability also open new reaction routes. If the SO₄^{•-}
\nCl⁻ + SO₄^{•-}
$$
\rightarrow
$$
 Cl[•] + SO₄²⁻
\n $k = 1.9 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \text{ (pH 7-8)}^{599}$
\n $k = 2.8 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \text{ s}^{599}$
\n $k = 3.1 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \text{ (pH 5.8)}^{583}$
\n $k = 3.1 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \text{ (pH 6.8)}^{960}$
\n $k = 3.7 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \text{ (pH 1.5)}^{583}$
\n $k = 4.7 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \text{ (pH 6.6-7.2)}^{961j} \text{ (3.97)}$

radical is the main-chain carrier, as suggested in the case of the photooxidation of SO_3^{2-} (pH > 7),⁷⁵⁸ high [Cl-I should inhibit the overall redox process.

In the case where the added anion competes as a ligand with sulfite (see section 2.2.1), the formation rate of the metal-sulfite complex should decrease with increasing anion concentration. **A** decrease in the formation rate of the iron(II1)-sulfito complexes with increasing $[SO_4^{2-}]$ has indeed been observed.⁵¹¹ Furthermore, the equilibrium constants of metal complexes exhibit a certain dependence on different aqueous salt solutions (see Table **2.5).**

Coordinated ligands can change the redox potential of the M^{2+}/M^{3+} couple^{420,448,962} and so affect the oxidation/reduction behavior of the transition metal ions. The oxidation rate of e.g. iron(I1) decreases in the order ClO_4^- > NO_3^- > Cl^- > Br^- > I^- > $SO_4^{2-841,889}$ (see also ref 963). The strong inhibition by sulfate ions can be explained in two ways: the produced iron(I1) sulfate species, FeS04, are less reactive than aquated iron(\overline{II}) ions;⁹⁶³ the formation of dimeric iron(II) species, $\rm Fe^{2+}-SO_4{}^{2-}-Fe^{2+}$ ([Fe $^{2+}$]total $\rm \gg [Fe^{2+}-SO_4{}^{2-}-Fe^{2+}])$ can occur,⁹⁶⁴ and these can be oxidized by oxygen. Oxidation studies of copper(1) in sea water⁹⁶⁵ clearly indicated that the rate of the autoxidation of copper(1) decreases in the order Cu+ \geq CuCl \geq CuCl₂⁻ (see also ref 903). Theis and Singer⁹⁶⁶ showed that organic acids could retard the autoxidation of iron(I1) due to the formation of stable complexes. The reactivity of copper(I1) complexes is substantially smaller than that of free copper(I1) ions,

when several organic ligand molecules are attached. This effect can be explained in terms of changes in the redox potential of the copper $(II).$ ⁹⁶⁷ In contrast, the oxidation kinetics of aquated chromium(I1) by **H202** is accelerated by a factor of **2-5** in the presence of organic and inorganic anions.968 It is suggested that an anion-bound chromium(I1) species is formed, which is more easily oxidized than the hexaaqua species. Recently, the inhibiting effect of organic ligands in the iron-catalyzed autoxidation of sulfur- (IV) oxides in atmospheric water droplets was suggested.¹⁸¹ These authors observed, in fog water with high concentrations of organic pollutants, sulfur (IV) oxidation rates that were significantly lower than those expected for the iron-catalyzed autoxidation process. In contrast, Mohapatra⁹⁶⁹ found for the iron-(111)-catalyzed oxidation of bisulfite in the presence of 1,lO-phenanthroline, that the oxidizing ability of the iron(III) species follow the order: $Fe(phen)₃^{3+} >$ $Fe(phen)₂3+ > Fe³⁺$. In addition, Richards et al.⁶³² observed that the reaction between hydrogen peroxide and sulfur(IV) was inhibited in cloud water samples. The inhibition was suggested to be due to the formation of hydroxymethanesulfonic acid **(HMSA)** via the interaction of formaldehyde with sulfite (see introduction to section 3.2).

The sulfur-induced translabilization effect of coordinated S ligands has been studied in detai1.767,970 If other anions also induce a trans effect, ligand substitution will be accelerated resulting in a faster complex formation and subsequent decomposition. Furthermore, the decomposition of iron(II1)-sulfito complexes at a given pH proceeds faster in nitric acid medium than in sulfur acid medium.466

For rain samples collected in Germany (pH 4.4 [acetate] = 5.2 μ M, [formate] = 5.9 μ M, [sulfate] = 30.5 μ M, [chloride] = 12.2 μ M), the distribution of different metal complexes was studied.¹⁶⁹ In the case of copper (II) , iron (II) , and manganese (II) the hexaaqua complexes dominate, whereas 90-95% of the iron- (III) is present as the dihydroxo species, $[Fe(H_2O)_4]$ - $(OH)₂$ ⁺. The contribution of metal sulfate complexes is in the range of **0.3-0.7%** for copper(II), iron(II), and manganese(II), but for iron(III) $\leq 0.1\%$. Complexes with organic anions like acetate and formate are only present in fractions $\leq 0.1\%$ for the investigated anions.169 At higher [organic], the situation changes completely. Ere1 et al.791 calculated for an atmospheric water sample (pH 3.4, [oxalate] = 13.2 μ M, [acetate] = 36.8 μ M, [formate] = 39.8 μ M, [chloride] = 95 μ M, [sulfate] = 264 μ M) that more than 97% of the iron(II1) is complexed by oxalate, whereas 95% of the iron(II) is in the $Fe(H_2O)_6^{2+}$ form. The remaining iron(I1) is complexed by sulfate **(3.2%)** and acetate (1.6%).

3.5.2. *Influence of Ionic Strength*

The ionic strength μ can have an important influence on the rate constant *k* of a reaction and therefore also on the equilibrium constant *K.* **A** theoretical study on the influence of ionic strength on the reaction rate of the oxidation of sulfur (V) oxides is reported by Clarke.409 **A** compilation of literature on the effect of ionic strength on the oxidation of sulfur- **(IV)** oxides is given in Table 3.16.

jRate constant depends on ionic strength and increases with increasing μ ; **given value is for** $\mu = 0.1$ **M**; $k = 6.2 \times 10^8$ **M**⁻¹ **s**⁻¹ at μ = 0.4 **M**.

Table 3.16. Influence of Ionic Strength *p* **on the Oxidation** Rate **of Sulfur(Iv) Oxides**

μ (M)	remarks	$\mathop{\mathrm{ref}}\nolimits$
$0 - 1$	uncatalyzed oxidation by O_3 ; increase of reaction rate	590
$0.18 - 1.6$	uncatalyzed oxidation by H_2O_2 ; influence of μ is pH dependent	570
$0 - 0.447$	uncatalyzed oxidation by H_2O_2 ; no influence of μ	691
$0 - 1$	uncatalyzed oxidation by H_2O_2 ; reaction rate depends on electrolyte used for adjusting ionic strength	698
$0.1 - 1.0$	uncatalyzed oxidation by H_2O_2 ; slight decrease (20%) of the reaction rate with increasing ionic strength	693
$0.12 - 2.12$	cobalt(II) oxide catalysis; slight increase of the reaction rate (ca. $25\%)$	643
$0 - 0.15$	iron(II) catalysis; inhibition of the reaction rate	826
$0 - 1.0$	iron(III) catalysis; enhancement of the reaction rate	953
$0.1 - 1.0$	$iron(III)$ catalysis; inhibition of the $O2$ -induced step	511
$0 - 0.2$	manganese(II) catalysis; inhibition of the reaction rate	826
$1 \times 10^{-3} - 1$	manganese(II) catalysis; inhibition of the reaction rate	971
$0 - 1$	manganese(II) catalysis; inhibition of the reaction rate	749
$1 \times 10^{-3} - 1$	iron(III)-manganese(II) synergism; inhibition of the reaction rate	955

Figure 3.11. (a) Synergism coefficient *S* as a function of Mn concentration, **10** mM of the second catalyst, **10** mM S(IV) and pH **5; (b)** synergism coefficient *S* for Mn-Fe system as a function of different [Fel at **10** mM **S(rV)** and **pH**

3.5.3. *Synergism*

In atmospheric chemistry, synergistic effects probably play an important role. Positive synergism is defined as an acceleration of the transition metalcatalyzed oxidation of $\text{suffix}(IV)$ oxides, resulting from the action of two or more catalytically active transition metal ions. Negative synergism occurs when the catalytic activity of a transition metal ion is decreased by the presence of another metal ion. For example, the iron(II1)-catalyzed oxidation of sulfur(IV) oxides is inhibited by addition of vanadium(IV) or iron(II) salts.^{511,804,972} Manganese(II) exhibits a clear decrease in its catalytic activity in the presence of copper(II) (pH 5, $[Mn^{2+}] = [Cu^{2+}] \ge$ 5.0×10^{-3} M)⁹⁷³ (see also ref 974).

The synergistic effect (positive or negative) depends on the concentration or the concentration ratio of the involved metal ions (Figure 3.11) and can be described in a general way by the synergism coefficient S, which is defined as the ratio of the observed enhancement factor **Eobs** with both catalysts **A** and B present simultaneously, to the separate enhancement *Ei* of the individual catalyst i (ref 973 and

$$
S = \frac{E_{\rm obs}}{(E_{\rm A}{}^2 + E_{\rm B}{}^2 - 1)^{1/2}}
$$

literature cited therein). The interpretation of S can be given as

^S> 1, positive synergism

 $S = 1$, no interaction

 $S < 1$, negative synergism

The first study on synergistic effects in transition metal-catalyzed reactions was probably performed by Price.⁹⁷⁵ The synergistic effect of two transition metal ions (Cu^{2+}, Fe^{2+}) during the oxidation of sulfur- (IV) oxides was probably described first by Titoff.⁶¹⁷ In more recent literature (Table 3.17), the ironmanganese synergism is the most widely studied system for the catalyzed oxidation of sulfur(IV) oxides. The iron-manganese synergism, as well as other synergistic effects, cannot be described as the sum of the two individual reactions r_1 and r_2 xabiy described
rature (Table :
sm is the most
alyzed oxidation
inganese syner
ects, cannot be
vidual reactions
 $\frac{Mn^2$ ², ^r₁ HSO₄-

In for the catalyzed oxidation of sulfu. The iron–manganess synergism, as w
symergistic effects, cannot be described a
of the two individual reactions
$$
r_1
$$
 and r_2
HSO₃⁻ + 1/₂O₂
HSO₃⁻ + 1/₂O₂
He³⁺, r_2 ⁻ HSO₄⁻ (3.98)
the following problem mechanism

but rather follows another mechanism

$$
HSO_3^- + \frac{1}{2}O_2 \xrightarrow{Mn^{2+}, Fe^{3+}} HSO_4^-
$$
 (3.99)

and can be described for example by the following rate law:932

$$
d[S(IV)]/dt = k[{Mn2+}] + [Fe3+][S(IV)]0.85
$$

2.0 × 10⁻⁷ M ≤ [Fe³⁺] ≤ 1.0 × 10⁻⁶ M
2.0 × 10⁻⁷ M ≤ [Mn²⁺] ≤ 2.0 × 10⁻⁶ M
 μ < 1.0 × 10⁻³ M
 $k = 1.0 × 103 M-0.85 s-1 (pH = 4, 25 °C)$

Martin and Good955 reported a different rate law $([S(IV)] \leq 10^{-5} M$, pH = 3.0) for the iron-manganese synergism:

$$
d[S(IV)]/S(IV)]dt = k_1[Fe^{3+}] + k_2[Mn^{2+}] + k_3[Fe^{3+}][Mn^{2+}]
$$

with $k_1 = 2600 M^{-1} s^{-1}$, $k_2 = 750 M^{-1} s^{-1}$, and $k_3 = 1.0 \times 10^{10} M^{-2} s^{-1}$.

Table 3.17. Selected Literature on Synergistic Effects for the Oxidation of Sulfur(IV) Oxides

catalyst	remarks	ref
Cu^{2+}/Mg^{2+}	$Mg(OH)2$ inhibits in alkaline solution	976
Fe^{3+}/Cu^{2+}	influence of $\mathrm{Fe^{2+}}$ and $\mathrm{Cu^+}$	845
Fe^{2+}/Mn^{2+}	$Fe2+$ is oxidized into the catalytic active $\mathbf{F}e^{3+}$	745
Mn^{2+}/Cu^{2+} Fe^{3+}/Cu^{2+}	no synergism by Cu ²⁺ in acidic solution influence on $SO_4^{2-}/S_2O_6^{2-}$ ratio; reaction rate increases with increasing $[Cu^{2+}]$	745 516
Fe^{3+}/Mn^{2+} Fe^{3+}/Ni^{2+} Fe^{3+}/Cr^{3+}	no synergism observed	516
Fe^{3+}/Mn^{2+}	no synergism in the presence of succinic acid	619
Fe^{3+}/Mn^{2+}	synergistic effect	977
Fe^{3+}/Co^{2+} Fe^{3+}/Cu^{2+} Mn^{2+}/Co^{2+}	no synergism observed	578
Fe^{3+}/Mn^{2+}	influence of pH, $[Fe^{3+}]$, $[Mn^{2+}]$	578
Fe^{2+}/Cu^{2+}	no synergism observed	828
Mn^{2+}/Fe^{3+} Mn^{2+}/Co^{2+} Mn^{2+}/Ni^{2+} Mn^{2+}/Cu^{2+}	influence of the concentration of the second metal ion	973
Fe^{3+}/Mn^{2+}	influence of pH, anions	978
Fe^{3+}/Mn^{2+}	pH dependence of rate constant; highest rate at pH 4	332
Fe^{3+}/Mn^{2+} Fe^{3+}/Cu^{2+}	synergistic effect	974
Mn^{2+}/Cu^{2+}	inhibition by Cu ²⁺	974
Mn^{2+}/Ni^{2+}	synergistic effect	832
Fe^{3+}/Mn^{2+}	influence of $SO_4{}^{2-}$ and ionic strength	955
Fe^{3+}/Mn^{2+}	$Fe^{3+}/Mn^{2+}/Pb^{2+}$ synergistic effect	932
Fe^{3+}/Mn^{2+}	no influence of Mn ³⁺	750
Fe^{3+}/Mn^{2+} Fe^{3+}/Co^{2+} Fe^{3+}/Ni^{2+} Fe^{3+}/Cr^{3+}	synergistic effect on the oxygen- induced step	511

Clarke and Radojevic 614 found no evidence for a synergistic effect between manganese and iron in rain water samples. In contrast, Tanaka et al.³³² reported that the sulfur(IV) oxidation rate in rain water depends on both the iron(II1) and the manganese(I1) concentrations.

Synergism in the transition metal-catalyzed oxidation of sulfur(IV) oxides can result from two effects. On the one hand, the transition metal ions act as individual catalysts which results in an oxidation rate that is not necessarily the sum **of** the individual rates (see Discussion above). On the other hand, in view of a redox cycle (see section **3.3.6),** the synergism can also be due to a faster reoxidation **of** the reduced metal ion. Synergistic effects in the case of metal ion oxidation processes has widely been re**ported.833,842,843,867,868**

3.5.4. *Influence* of *Oxygen*

The important role of oxygen during the overall redox process for the transition metal-catalyzed oxidation of **sulfur(lV)** oxides was discussed in section **3.3.4.** The homogeneously catalyzed oxidation (see

^a Under homogeneous conditions if not mentioned otherwise. ^b Under heterogeneous conditions. ^c Under both homogeneous and heterogeneous conditions. $\frac{d}{d}$ [CoSO₄] = 1.0 x 10⁻⁶ M.
 $\frac{d}{d}$ [CoSO₄] $\geq 1.0 \times 10^{-5}$ M. *f* At [O₂] < 0.8 mg L⁻¹ oxygen concentration is rate controlling; pH $6.5-7.7$. \mathscr{I} \overline{O}_2 dependence in the range 20 mmHg $< p_{0_2} < 100$ mmHg. ^h In sea water.

section **3.3)** in general proceeds in the presence as well as in the absence of oxygen (Ar- or N₂-saturated In the case of ${\rm cobalt}({\tilde{\bf \Pi}})^{760,979}$ and manganese(I1) catalysts,831 the oxidation **of** sulfur- (IV) was only observed as long as oxygen was still present in the solution. In the case of heterogeneous catalysis (see section 3.4) (CoO, CuO, SiO₂), Prasad et al.^{242,643} observed nearly no oxidation of sulfur(IV)

Table 3.19. The Effect of [Oal on the Chain Length of the Uncatalyzed Oxidation of Sulfur(IV) Oxidess18

	chain length		
initial $[O_2](M)$	pH 4.0	pH 9.0	
1.02×10^{-3} 7.5×10^{-4} 6.8×10^{-4} 2.6×10^{-4}	68 ± 11 67 ± 12 85 ± 15 $87 + 14$	7509 ± 1455 6733 ± 1159 5770 ± 1581 4407 ± 395	

in the absence of oxygen. For the uncatalyzed oxidation (see section **3.2.1)** of sulfur(IV) oxides, Fedorova et al.980 observed first an enhancement of the reaction rate with increasing O_2 partial pressure, which then becomes independent of $[O_2]$ at $P_{O_2} = 120$ mmHg (see also Table **3.18).** It was suggested that reaction **3.19** is no longer rate-determining at high $[O_2]^{.980}$

$$
SO_3^{\bullet-} + O_2 \rightarrow SO_5^{\bullet-}
$$
 (3.19)

Kraft and van Eldik⁷⁹² reported an additional step in the presence of oxygen for the iron(II1)-catalyzed oxidation of sulfur(IV) oxides, which was recently studied in more detail^{511,751,752} (see also Figure 3.8).

The effect of oxygen on the chain length of the uncatalyzed oxidation of sulfur(IV) oxides was studied recently by pulse radiolysis.⁸¹⁸ At the studied pH values **(4.0** and **9.0),** the chain length was independent of $[O_2]$ within the experimental error (Table 3.19), whereas it depended linearly on the sulfur (IV) concentration.

In the presence of oxygen the oxidation of sulfur- (IV) oxides proceeded faster than in the absence of oxygen.744,792,833 In contrast, most of the authors observed a zero-order dependence on oxygen for homogeneous catalysis (homogeneous conditions), whereas the reaction order is usually **1** or **2** under heterogeneous conditions (Table **3.18).** The homogeneous iron(I1)-catalyzed reaction is independent of the $[O_2]$ at low $[O_2]$, but shows a dependence at high $[O_2]$.⁷⁵⁵ Because of this, Huss et al.⁷⁵⁵ suggested an oxygen-dependent reaction step in the overall reaction mechanism that is negligible at low $[O_2]$ (see also ref 980). Alper⁹⁹⁰ reported for homogeneous catalysis by cobalt(I1) that the reaction was second order in O_2 at p_{O_2} < 0.8 atm, and first order in O_2 at p_{O_2} ≥ 11 atm. Sawicki and Barron⁹⁸⁴ found that the cobalt-(11)-catalyzed oxidation process involved a zero-order reaction in O_2 under homogeneous conditions and a first- or second-order reaction in O_2 under heterogeneous conditions (see Table **3.18).** In contrast, Bengtsson and Bjerle⁹⁸⁵ observed for both homogeneous and heterogeneous reaction conditions a zero-order reaction in O_2 . Sawicki and Barron⁹⁸¹ explained the different $[O_2]$ dependence by assuming that the heterogeneous conditions provide a mechanism for the regeneration **of** the catalyst cobalt(II1) (see section **3.3.61,** due to the constant supply of oxygen to the system. In the homogeneous system, there is no further supply of oxygen. Thus, after initiating the chain reaction and the consumption of oxygen, cobalt- (111) is not regenerated in the homogeneous system any longer. Hoffmann and Boyce⁹⁹⁶ pointed out that the zero order in $[O_2]$ found in many of the studies may be an experimental artifact.

During the oxidation of sulfur(IV) oxides, oxygen (11)-catalyzed autoxidation of sulfur(IV) oxides (reactions $3.100 - 3.102$), the oxygen consumption can be is consumed.^{547,641,751,752,850,981,987,997,998} For the cobalt-

$$
\text{Co}^{2+} + \text{SO}_3^{2-} \frac{k_1}{k_{-1}} \text{complex} \qquad \text{fast} \quad (3.100)
$$

complex + $O_2 \xrightarrow{k_2} SO_5^{2-} + Co^{2+}$ slow (3.101)

$$
SO_5^{2-} + SO_3^{2-} \stackrel{k_3}{\longrightarrow} 2SO_4^{2-}
$$
 fast (3.102)

described e.g. by the following rate law 987 (compare also with rate laws given in refs **985, 986,** and **998):**

$$
-\frac{\mathrm{d[O_2]}}{\mathrm{d}t} = \frac{k_1 k_2 [\mathrm{Co}^{2+}][\mathrm{SO}_3^{-2-}][\mathrm{O}_2]}{k_1 [\mathrm{SO}_3^{-2-}]+k_{-1}+k_2 [\mathrm{O}_2]}
$$

For the uncatalyzed autoxidation in buffered solution, Braga and Connick⁹⁸¹ found the following rate law for the oxygen consumption (pH 4.7, $[S(\overline{IV})] \gg [O_2]$):

$$
-\frac{d[O_2]}{dt} = \frac{k[HSO_3^-]^{\frac{3}{2}}[O_2]^0}{[H^+]}
$$

Examples for the oxygen consumption during the transition metal-catalyzed oxidation of sulfur(IV) oxides are given in Figure **3.12.** Stoichiometric measurements for the oxygen consumption during iron(II1) catalysis (Figure **3.13a)** demonstrate a linear dependence of the $[O_2]$ consumed on the initial $[S(V)]$ employed (ratio **1:2),** as well as a slight increase in the consumption of oxygen with increasing $[Fe(II)]$ (Figure **3.13b).** Figure **3.13** clearly indicates that oxygen is mainly consumed during the overall oxidation of sulfite to sulfate (reaction **3.103)** and that very little is really used for the autoxidation of iron(I1) to $iron(III)$ under the selected reaction conditions $(IS(IV))$ \gg [O₂]). Thus, iron(II) is only oxidized indirectly via sulfur oxide radicals (see section **3.3.4).** The stoichi-

ometry in reaction 3.103 is in line with other results
\n
$$
HSO_3^- + {^{1/2}O_2} \rightarrow SO_4{}^{2-} + H^+ \quad (3.103)
$$

reported in the literature. $777,812$

Recently, Brandt et al.752 reported evidence for the kinetic correlation of the oxygen consumption and the decomposition of the iron(\overline{III})-sulfito complexes during the iron(II1)-catalyzed autoxidation of sulfur(IV) oxides. The rate constants obtained for the oxygen consumption were exactly a factor of **2** smaller than those values found for the decomposition reaction. This was related to the stoichiometry of the oxygen consumption (Figure 3.13a).

For the influence of oxygen on the product distribution see section **3.5.6.**

3.5.5. *Influence of pH*

The pH dependence of the uncatalyzed oxidation of sulfur(IV) oxides has been mentioned in section **3.2.** In the case of the transition metal-catalyzed

Figure 3.12. Oxygen consumption during the transition metal-catalyzed oxidation of sulfur(IV) oxides: (a) iron(II) catalysis, (b) manganese(II) catalysis, (c) cobalt(II) catalysis; conditions: $[M(II)] = 5.0 \times 10^{-4}$ M, $[S(IV)] = 5.0 \times 10^{-4}$ **2.5.511** 10⁻³ M, $[O_2] = 7.5 \times 10^{-4}$ M, $\mu = 0.5$ M, $T = 25$ °C, $pH =$

oxidation process, the reaction mechanism and the oxidation rate are influenced by the pH dependent distribution of the metal ions [see Figure 2.5 for iron- (III)] and of the sulfur(IV) species (see Figure 2.2). The different metal and $\text{suffix}(IV)$ species exhibit different reactivities. For instance, HSO_3^- is ca. $20-$ 40 times less reactive than $SO_3^{2-596,649}$ (see also ref 597). Ali et al.⁸⁴⁷ reported for the oxidation of $S(IV)$ by a cobalt(III) complex the reactivity order SO_3^{2-} > HSO_3^- > $\text{SO}_2\text{H}_2\text{O}$, where SO_3^2 ⁻ is 16 times more reactive than HSO_3^- , and HSO_3^- is 53 times more reactive than $SO_2 \cdot H_2 O$. Furthermore, the pH affects the stability of the produced transition metal complexes. Where the copper(I1)-sulfito complex is only stable in acidic solution, the iron(II1)-sulfito complex decomposes slower in alkaline than in acidic me- dium.^{999}

As mentioned in section **3.3,** it is suggested in the literature that the pH has a strong influence on the overall reaction mechanism. For pH *0-3,* Martin et al.756 suggested a nonradical mechanism for the iron- (111)-catalyzed oxidation of *sulfbr(N)* oxides, whereas a radical mechanism was proposed for the pH range

Figure 3.13. Oxygen consumption during the iron(II1) catalyzed oxidation of sulfur(N) oxides: (a) *S(N)* dependence, (b) influence of Fe(II), (c) influence of iron(III). Conditions: (a) $[Fe(III)] = 5.0 \times 10^{-4} M$, $[O_2] = 7.5 \times 10^{-4}$ **M,** $\mu = 0.5$ **M,** $T = 25$ °C, $pH = 2.5$; (b and c) $[S(IV)] = 7.5$ $= 2.5$, for iron(II) initial $[Fe(III)] = 5.0 \times 10^{-4}$ M (open squares), $[Fe^{n+}] = 5.0 \times 10^{-4}$ M (closed rhombs), respectively.⁵⁷² 10^{-4} M, $[O_2] = 7.5 \times 10^{-4}$ M, $\mu = 0.5$ M, $T = 25$ °C, pH

Table 3.20. pH-Dependent Chain Length during the Oxidation of Sulfur(W Oxides

рH	chain length	remarks	ref
≤ 2.9 4.0	76 9.0 3470 9.0 6100	$1-2$ iron(III) catalysis uncatalyzed oxidation by radiolysis uncatalyzed oxidation by radiolysis uncatalyzed oxidation by radiolysis	1000 605,818 806 605.818

4-7 (see also ref 755, **p** 4232). In contrast, Brandt et al.752 observed an inhibiting effect of radical scavengers on the iron(I11)-catalyzed reaction at pH **2.5.** There is some evidence in the literature for a pH-dependent chain length during the oxidation of $sulfur(IV)$ oxides (Tables 3.19 and 3.20). According to data of Zhang and Edwards, 815 the chain length of the vanadium- and cobalt-catalyzed decomposition of the HSO_5^- anion seems to be independent of pH.

For the heterogeneously catalyzed oxidation of $sulfur(V)$ oxides by soot particles the reaction pathway is pH dependent. At an initial lower pH (54) , iron(II1) species are the catalyst, whereas at an initial higher pH *(5.2-5.5),* iron(I1) is the catalytic active species.⁹¹²

It is impossible to formulate a rate law over a wide pH range due to the pH-dependent distribution of the metal and sulfur (IV) species. The following rate laws for iron(III) catalysis⁷⁵⁶ clearly indicate a change in

Table 3.21. pH-Dependent Reaction Orders for Different Species, Involved in the Iron- and Manganese-Catalyzed Oxidation of Sulfur(IV) Oxides

species	pH	reaction order ^a	ref
$Fe3+$	$0 - 3$		756
	4	2	756
	$5 - 7$	0 or 2^b	756
$Fe2+$	1.67	0.94	826
	2.14	1.2	826
Mn^{2+}	$0 - 3$	2	578
	$1 - 4$	2	826
S(IV)	$0 - 3$	$1 (Fe^{3+})$	578
	$0 - 7$	$1(Fe^{3+})$	756
	$1 - 4$	$\leq 1^c$ (Fe ²⁺)	826
		$1 (Fe3+)$	1001
	≤4	$1(Fe^{3+})$	1002
	≥5	$2(Fe^{3+})$	1001
	5–8	$2(Fe^{3+})$	1002

 α In brackets: metal ion used as catalyst. α Only dissolved Fe(III) is catalytically active; see text. \cdot pH and ionic strength affect reaction order.

the reaction order for some species for different pH ranges (rate in M s^{-1}):

pH 0-3 $-d[S(V)]/dt = 6.0[Fe^{3+}][S(V)][H^+]$

$$
pH 4 \t -d[S(IV)]/dt = 1.0 \times 10^{9} [Fe^{3+}]^{2} [S(IV)]
$$

pH 5-6
$$
-d[S(V)]/dt = 1.0 \times 10^{-3} [S(V)]
$$

pH 7
$$
-d[S(IV)]/dt = 1.0 \times 10^{-4}[S(IV)]
$$

(rate laws valid for $[Fe^{3+}] > 1.0 \times 10^{-7}$ M,

 $[S(IV)]$ < 1.0 \times 10⁻⁵ M, $\mu_{(pH4-7)}$ < 1.0 \times 10^{-2} M, and T = 25 °C)

In slightly acidic to neutral $pH(5-7)$ the reaction is zero order in total iron(II1) concentration since colloidal iron is a much weaker catalyst than dissolved iron (see also refs 905 and 906) and it is supposed that traces of iron are usually present⁷⁵⁶ (see also sections 3.2 and 3.4).

It should be noted, that the pH-dependent reaction order for the individual species is an area of contradicting results (Table 3.21).

The pH dependence of the transition metalcatalyzed oxidation of sulfur(N) oxides has been studied by many groups (Table 3.22). For iron(II1) catalysis only a few studies are available for pH > *5,* since at $pH > 4$ precipitation of iron hydroxides occurs.

The reaction rate of the transition metal-catalyzed oxidation process in general exhibits a bell-shaped pH dependence with a maximum rate around pH $2-4.511,749,779,905,932,978,1002$

3.5.6. *Products*

The analysis and the distribution of the products formed during the transition metal-catalyzed oxidation of sulfur (IV) oxides can give further information on the reaction mechanism. Ion chromatogra $phy^{1003,1004}$ can be used as a sensitive technique for this **PUrPOSe~387,340,511,733,1005,1006**

The reaction products of the oxidation of sulfur- *(IV)* oxides are SO_4^2 ⁻ and $S_2O_6^2$ ⁻ (see Table 3.23). Although $S_2O_6^{2-}$ is thermodynamically unstable with respect to disproportionation, it is kinetically stable with respect to disproportionation and oxidation at room temperature¹⁰¹⁵ (see also ref 596). Lew and Powell¹⁰¹⁶ observed a slow disproportionation at room temperature in acidic solution $(\tilde{k}_{obs} = 4.2 \times 10^{-5} \text{ s}^{-1})$ in $7.15 \text{ M H}_2\text{SO}_4$). The rate of this reaction increases with increasing acidity. Ion chromatographic studies revealed no evidence for the oxidation of $S_2O_6^{2-}$ in the presence of iron(II1) and oxygen during 2 h; airsaturated $S_2O_6^{2-}$ solutions are stable for more than 2 weeks.511 Siskos et al.781 observed no reaction between $S_2O_6^{2-}$ and manganese(III) in 3.5 M acid during 2 h.

The product formation not only depends on the presence or absence of metal ions, it also depends on other reaction parameters like initial concentrations, presence of anions, and the pH of the solution. One

Table 3.22. Selected Literature on the pH Dependence of the Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides

metal	pH range	remarks	ref
Co^{3+a}	$2 - 8$	slight increase of the reaction rate with increasing pH in the range $2-5$; strong increase at $pH > 5.5$	847
CoO	$2.5 - 6.5$	surface catalysis; minimum reaction rate at pH 4	643
CuO	$4.2 - 5.3$	surface catalysis; nearly no pH dependence for reaction rate	242
Cu^{2+} , $Cu^{3+}b$	$4 - 12$	maximum reaction rate for sulfite-induced Cu^{2+} oxidation at pH 8-9	649
$\rm Fe^{2+}$	$0 - 3$	no significant pH effect in the range $0.5-2$	828
	$3 - 7$	in the presence of small $[H_2O_2]$; reaction rate increases with increasing pH	697
Fe^{3+}	$1 - 3$	maximum reaction rate at pH 2-2.5	387
	$1.6 - 3$	maximum decomposition rate of iron-sulfito complex at pH $2-2.2$	466
	$2 - 6$	maximum reaction rate at pH 4	978
	$2.6 - 6.2$	with decreasing pH decline in chain length	1000
	$3 - 5$	no significant pH effect in the range $3.5-4.5$	905
	$3 - 8$	change in reaction order	1002
α -Fe ₂ O ₃	$2 - 10.5$	surface catalysis; maximum quantum yield at pH 5.7	777
Mn^{2+}	$2.5 - 7.5$	no significant pH effect in the range $3-6$	779
	$3 - 6$	no significant pH effect in the range $3.5-5$	905
	$3 - 7$	no significant pH effect in the range $3.5-6$	978
$Mn^{3+\ c}$	$4 - 8.5$	minimum reaction rate at pH 6.5	753
$Ni^{3+ d}$	$0 - 1.9$	reaction rate is accelerated with decreasing pH	742
Fe^{3+} , Mn^{2+}	$2 - 6$	maximum reaction rate at pH 4	978
	$3 - 5$	maximum reaction rate at pH 4	932

(III)-dipicolinate complex. o Cu(II)- and Cu(III)-tetraglycine. c Mn(III)-(acetylacetonato) complex. a Ni(III)-(cyclam) complex.

Table 3.23. Formation of SO_4^{2-} and $S_2O_6^{2-}$ during the Oxidation of Sulfur(IV) Oxides

metal ion	$SO_4{}^{2-}$	$S_2O_6{}^{2-}$	remarks	ref
	$\begin{array}{c} + \end{array}$ $+$	$+$ $^{+}$	pulse radiolysis of deoxygenated aqueous S(IV) solutions; $SO_4^{2-}:\text{S}_2O_6^{2-}$ ratio depends on pH photolysis of aqueous sulfite solutions; no influence of light but strong influence of pH on yield of $S_2O_6^2$	798 1007
	$^{+}$	$+(-)$	photolysis of aqueous sulfite solutions; SO_4^{2-} : $S_2O_6^{2-} = 2.1$ in the absence of O_2 ; in the presence of O_2 no formation of $S_2O_6^{2-}$	758
	$^{+}$		oxidation of $S(IV)$ by HSO_5^- in the absence of O_2	810
	$^{+}$	$+(-)$	oxidation of S(IV) by $S_2O_8^2$; if S(IV) in excess higher yield of $S_2O_6^2$; addition of pyridine, dioxane, or fluoride results also in higher $[S_2O_6^{2-}]$; no effect by addition of HCO ₃ ⁻ , SO ₄ ² ⁻ or $PO4$ ³⁻	1008
	$^{+}$	$^{+}$	oxidation of S(IV) by $S_2O_8^2$; amount of formed $S_2O_6^2$ depends on pH; in acidic medium higher yield of $S_2O_6^{2-}$ than in basic medium	596
	$^{+}$	-	oxidation of $S(IV)$ by $S_2O_8^{2-}$	597
	$\boldsymbol{+}$	$\overline{}$	oxidation of $S(V)$ by ONOOH in the pH range $2-6$	691
	$^{+}$	$^{+}$	oxidation of $S(IV)$ by $NO2$; presence of oxygen reduces amount of formed $S2O62-$; in absence of oxygen ratio of $[SO_4^{2-}]: [S_2O_6^{2-}] = 1.8$	736
$\rm Co^{2+}$	\ddag $\ddot{}$	-	oxidation of S(IV) by H_2O_2 ; $[S_2O_6^{2-}] \approx 0.4\%$; no effect by addition of pyridine in presence of CoCl ₂ greater amount of $S_2O_6^{2-}$ formed than in the presence of CoSO ₄	1008 151
	$^{+}$	$\overline{}$	no formation of $S_2O_6^{2-}$ after 30 min; presence of oxygen; pH 2.5	511
Co ^H TSP ^a	$\ddot{}$	$\overline{}$	in the presence of O_2 under neutral and alkaline pH conditions	1009
$Co^{3+ b}$	$+(-)$	$^{+}$	SO_4^{2-} : $S_2O_6^{2-}$ ratio depends on Co^{3+} : $S(IV)$ ratio; at high [S(IV)] no formation of SO_4^{2-}	1010
Cr^{3+}	\ddag	-	no formation of $S_2O_6^{2-}$ after 30 min; presence of oxygen; pH 2.5	511
$Cu2+$	$^{+}$	$^{+}$	SO_4^{2-} : $S_2O_6^{2-}$ ratio depends on Cu^{2+} : $S(IV)$ ratio	1008
	$+$ $+$ $+$	$+(-)$	different complexes studied (labile and inert; see text)	787
		$\qquad \qquad -$	absence of O_2	649
		-	absence of $O2$	740
Cu ^{II} TSP ^a	$^{+}$	-	no formation of $S_2O_6^2$ ⁻ after 30 min; presence of oxygen; pH 2.5	511
$\rm Fe^{2+}$	$\, + \,$ $+$	$\overline{}$ $\overline{}$	in the presence of O_2 under neutral and alkaline pH conditions	1009
Fe ^{II} TSP ^a	\ddag	$\qquad \qquad -$	yield of $S_2O_6^{2-}$ less than 1%; presence of O_2 ; pH 0.9-3 in the presence of O_2 under neutral and alkaline pH conditions	828 1009
$\mathrm{Fe^{3+}}$	$+$	$\boldsymbol{+}$		999
	$^{+}$	$+$	addition of HCl decreases amount of $S_2O_6^{2-}$ formed, whereas addition of H ₂ SO ₄ has nearly no influence	151
	$^{+}$	$^{+}$	yield of $S_2O_6^{2-}$ independent of $Fe^{3+}:S(IV)$ ratio	774
	$+$	$^{+}$	in the presence of Cu^{2+} only small quantities of $S_2O_6^{2-}$	845
	$^{+}$	$\qquad \qquad -$	redox titration with $K_2Cr_2O_7$; pH 1.0	1011
	$\boldsymbol{+}$ $^{+}$	$\boldsymbol{+}$ $+$	addition of copper(II) decreases amount of $S_2O_6^{2-}$ formed amount of formed $S_2O_6^2$ depends on Fe^{3+} : $S(IV)$ ratio, present anions, $[O_2]$; SO_4^2 inhibits	1012 387
		$\mathrm{+}$	formation of $S_2O_6^2$ - lower SO_4^2 : $S_2O_6^2$ ratio as by the Mn ²⁺ catalysis with the same metal ion concentration	974
	$\,^+$ $+(-)$	$^{+}$	addition of Cu ²⁺ decreases amount of $S_2O_6^{2-}$ formed; depending on Fe ³⁺ :S(IV) ratio nearly quantitative formation of $S_2O_6^{2-}$	1013
	$+(-)$	$+$	depending on Fe ³⁺ :S(IV) ratio nearly quantitative formation of $S_2O_6^{2-}$; addition of Cu^{2+} or Cl ⁻ results in a decrease of amount of $S_2O_6^{2}$ formed; no $S_2O_6^{2}$ formation in presence of 1 M NaCl	516
	$\mathrm{+}$ $+$	$\mathrm{+}$ $+(-)$	amount of formed $S_2O_6^{2-}$ depends on Fe^{3+} : $S(IV)$ ratio and pH; no influence of $[O_2]$ addition of Co^{2+} , Cr^{3+} , Mn^{2+} , or Ni^{2+} decreases amount of formed $S_2O_6^{2-}$; in presence of	511 511
			Cu^{2+} no formation of $S_2O_6^{2-}$; presence of oxygen, pH 2.5	
α -Fe ₂ O ₃ Mn	$^{+}$ \div	$+(-)$ $+$	in N ₂ -saturated solutions up to 28% S ₂ O ₆ ² ⁻ ; no S ₂ O ₆ ² ⁻ formation in air saturated solutions in water from flue gas desulfurization processes; mainly Mn present $(\sim 50 \text{ mg L}^{-1})$ (other metals: Fe ≈ 0.15 mg L ⁻¹ , Co ≈ 0.08 mg L ⁻¹ , Cu < 0.01 m L ⁻¹)	777 1014
Mn^{2+}	$^{+}$	$+(-)$	amount of $S_2O_6^2$ formed is reduced to about one-tenth of that obtained in the absence of manganese salts	151
	$^+$	$\mathrm{+}$	higher SO_4^2 ⁻ : $S_2O_6^2$ ⁻ ratio as by Fe ³⁺ catalysis with same metal ion concentration	974
	$^{+}$	$\hspace{0.1mm} +$	in buffered solution; pH 2.44; leached mineral suspension; presence of O_2 and $Fe(Fe] \ll [Mn])$	1006
			no formation of $S_2O_6^2$ after 30 min; presence of oxygen; pH 2.5	511
Mn ^{II} TSP ^a	$^{+}$		in the presence of O_2 under neutral and alkaline pH conditions	1009
Mn^{3+}		$\ddot{}$	different complexes studied (labile and inert; see text)	787
$\mathbf{Mn}^{3+ c }$	$+ +$	$+$	no formation of $S_2O_6{}^{2-}$ under either aerobic or anaerobic conditions	781 753
$Ni2+$		$\frac{1}{+}$	in the presence of NiCl ₂ greater amount of $S_2O_6^{2-}$ formed than in the presence of NiSO ₄	151
			no formation of $S_2O_6^{2-}$ after 30 min; presence of oxygen; pH 2.5	511
Ni ^{II} TSP ^a		\overline{a}	in the presence of O_2 under neutral and alkaline pH conditions	1009
$Ni^{3+ d}$			in the presence of O_2 ; product formation followed spectroscopically; $S_2O_6^{2-} < 2\%$	746
ª TSP d [Ni ^{III} (cyclam)] complex.			$=$ 4,4',4"',4"'-tetrasulfophthalate cyanine. Φ [Co ^{III} (dodecatungsto)] complex. Φ [Mn ^{III} (acetylacetonato)]	complex.

of the earliest detailed studies on the formation of $S_2O_6^{2-}$ was performed by Meyer.⁷⁸³ The presence of metal ions seemed to result in higher $S_2O_6^{2-}$ yields. Sato and Okabe¹⁰¹² observed a higher concentration of $S_2O_6^{2-}$ in the case of copper(II) catalysis than for the uncatalyzed autoxidation reaction. The concen-

tration of $S_2O_6^{2-}$ also dependent on the transition metal ion used as catalyst.^{1017,1018} Cavicchi¹⁰¹⁸ reported the following quantities of $S_2O_6^{2-}$ formed during the oxidation of sulfur(IV) oxides: $Mn(V)$ **49%,** Fe(II1) **39%,** Co(II1) **E%,** Ni(II1) 9%. The use of different manganese oxides also resulted in dif-

Reaction co-ordinate

Figure 3.14. Paths in the oxidation of nonmetallic substrates by metal complexes. $Oxid = \text{metal complex oxidiz}$ ing agent. Red = reduced form of the metal complex. Sub $=$ nonmetallic reducing substrate. Int $=$ intermediate, a free radical if Oxid is a 1 equiv oxidant. Oxid-Sub complex = complex between oxidizing agent and reducing substrate. Reaction by this route does not involve the formation of free radicals or other relatively high-energy intermediates. 1019

ferent yields of $S_2O_6^{2}$ ^{-:151} β -Mn₂O₃ 94%, α -Mn₂O₃ 77%.

According to VepFek-Sigka et **al.,787** the substitution reactivity of the complex [inert or labile (see ref 788)] is the main factor that influences product formation during the oxidation of sulfur (V) oxides (see Figure 3.14). Labile complexes result in SO_4^2 ⁻ and SO_6^2 ⁻ as oxidation products, whereas inert complexes only result in the formation of SO_4^2 ⁻. The latter complexes form S-bonded metal-sulfito complexes (see Table 3.7), whereas labile complexes can provide two coordination sites in the cis position. Thus, the sulfite ion can bind via two 0 atoms to the metal center, which is the steric basis for the formation of the $S-S$ bond and in $S_2O_6^{2-787}$ When the labile Fe- $(H_2O)_6^{3+}$ complex is used as catalyst, the formation of both $SO_4{}^{2-}$ and $S_2O_6{}^{2-}$ can be expected. Faust et al.⁷⁷⁷ observed the formation of $S_2O_6^{2-}$ only in the absence of oxygen (see Table 3.23), whereas Kraft 387 detected both products in the absence as well as in the presence of oxygen. Sarala and Stanbury¹⁰²⁰ assumed that $S_2O_6^{2-}$ is only produced via innersphere reactions.

It has been discussed in the literature that the formation of dithionate during the transition metalcatalyzed oxidation of sulfur (IV) oxides depends on the redox potential of the oxidant.^{781,957,1019}

The product distribution depends on the pH of the reaction solution. An increase in the amount of $S_2O_6^{2-}$ formed has been observed with increasing pH.^{387,999,1017 Bassett and Henry¹⁰¹⁷ observed the} formation of $S_2O_6^{2-}$ only under acidic conditions. The highest formation rate of $S_2O_6^{2-}$ was obtained for the uncatalyzed oxidation in the pH range $2.8-3.5$; no $S_2O_6^{2-}$ formation was observed at pH > 6.1012 In the case of iron(III) catalysis, the formation of $S_2O_6^{2-}$ was observed at $pH > 2$, whereas no $S_2O_6^{2-}$ formation was detected at $pH > 5.7$.¹⁰¹² In the presence of EDTA, $S_2O_6^{2-}$ was also formed in the pH range $5-8.1021$

The effect of oxygen on the formation of dithionate is uncertain. In the case of iron(II1) catalysis, Kraft³⁸⁷ found a higher quantity of $S_2O_6^{2-}$ in the presence of oxygen than in its absence, whereas Brandt⁵¹¹ observed no effect of oxygen. Using α -Fe₂O₃ as catalyst, Faust et a1.777 found dithionate as one oxidation product in N_2 -saturated solutions and no dithionate in air-saturated solutions. Oxygen seems to have an inhibiting effect on the formation of dithionate for the uncatalyzed oxidation. The photolysis of aqueous sulfite solutions results in the absence of oxygen, in a SO_4^2 ^{-/} $S_2O_6^2$ ⁻ ratio of 2:1, whereas no dithionate was formed in the presence of oxygen.⁷⁵⁸ Littlejohn et al.⁷³⁶ observed a SO_4^2 ^{-/} $S_2O_6^{2-}$ ratio of 1.8:1 for the oxidation of sulfur(IV) by nitrogen dioxide in the absence of oxygen. In the presence of oxygen less dithionate is formed.

Different reaction mechanisms have been suggested for the formation of $S_2O_6^{2-}$. In earlier work, M eyer⁷⁸³ postulated the decomposition of a manga-

nese-sulfito complex as source for
$$
S_2O_6^{2-}
$$
:
\n $2MnO_2 + 3H_2SO_3 \rightarrow Mn_2(SO_3)_3 + 3H_2O + O$
\n (3.104)
\n $Mn_2(SO_3)_3 \rightarrow MnSO_3 + MnS_2O_6$
\n (3.105)

$$
Mn_2(SO_3)_3 \rightarrow MnSO_3 + MnS_2O_6 \quad (3.105)
$$

$$
SO3)3 \rightarrow MnSO3 + MnS2O6 (3.105)
$$

$$
MnSO3 + O \rightarrow MnSO4 (3.106)
$$

Carlyle and $Zeck⁷⁷⁴$ postulated that the reaction of the iron(II1) sulfito complex with the sulfite radical is the source for $S_2O_6^{2-}$.

$$
FeSO_3^+ + SO_3^{-*} + H_2O \implies Fe(OH)_2SO_3 + SO_2
$$
\n
$$
\downarrow
$$
\n
$$
Fe^{2+} + S_2O_6^{2-} + H_2O \qquad (3.107)
$$

Kraft and van Eldik⁷⁹² suggested that $S_2O_6^{2-}$ is mainly formed via decomposition of the $1:3$ iron(III)sulfito complex (see sections 3.3.1 and 3.3.2), since an increase in $[S(IV)]$ at constant $[Fe(III)]$ resulted in an increase in the concentration of $S_2O_6^{2-}$. In view of a free radical mechanism another source for the formation of $S_2O_6^{2-}$ is the recombination of $SO_3^{\bullet-}$ and $SO_5^{\bullet-}$ radicals:

s:
SO₃^{••} + SO₃^{••}
$$
\rightarrow
$$
 S₂O₆²⁻ (3.28)

$$
SO_3^{\bullet-} + SO_3^{\bullet-} + SO_6^{\bullet-} + SO_6^{\bullet-} + O_2 \qquad (3.28)
$$

$$
SO_3^{\bullet-} + SO_5^{\bullet-} \to S_2O_6^{\ 2-} + O_2 \qquad (3.29)
$$

$$
SO_3 + SO_5 \rightarrow S_2O_6^2 + O_2 \qquad (3.29)
$$

$$
SO_5^{\bullet-} + SO_5^{\bullet-} \rightarrow S_2O_6^{2-} + 2O_2 \qquad (3.30)
$$

Reaction 3.28 takes place only in acidic solution. In alkaline media the recombination of the $SO_3^{\bullet-}$ radicals results only in the formation of sulfate⁷⁹⁸ via

reactions 3.108 and 3.109, since the redox potential

$$
SO_3^{\bullet-} + SO_3^{\bullet-} \rightarrow SO_3 + SO_3^{2-} \quad (3.108)
$$

$$
SO_3 + SO_3 \rightarrow SO_3 + SO_3 \qquad (3.108)
$$

$$
SO_3 + H_2O \rightarrow SO_4^{2-} + 2H^+ \qquad (3.109)
$$

of the intermediately formed *SO3* (0.43 **V)** is lower than that of SO_3 ⁻⁻ (0.72 V; see also Table 3.5). SO_3 ⁻⁻ is therefore unstable with respect to disproportionation to $SO_3{}^{2-}$ and $SO_3{}^{647}$

4. Concluding Remarks

Since the middle of the 19th century the catalytic activity of transition metal ions in the oxidation of

Table 4.1. Catalytic Activity of Different Transition Metals toward the Oxidation of Sulfur(Iv) Orrides

transition metals	ref
(a) Homogeneous Catalysis	
Mn^{2+} > Cu^{2+} > Fe^{3+} > Co^{2+}	985
$Co^{2+} > Cu^{2+}$	1023
Mn^{2+} > Cu^{2+} > Fe^{2+} > Co^{2+} (pH < 5)	1024
$Fe^{3+} > Cu^{2+} > Mn^{2+} > Co^{2+}$	200
$Mn^{2+} > Fe^{2+} > Fe^{3+}$ (pH 2-3)	745
$Fe^{2+} \approx Co^{2+} > Mn^{2+} \approx Cu^{+}, Cu^{2+} \gg Fe^{3+} \approx Co^{3+} \gg$	739
Ni^{2+} (pH 8.5)	
$Fe^{2+} > Mn^{2+} > Fe^{3+}$ (pH 1-4)	826
$Co^{2+} > Fe^{2+} > Mn^{2+} > V^{4+}$ (pH 9.2 ^a)	1009
$\text{Fe}^{3+} > \text{Mn}^{2+} > \text{Co}^{2+} > \text{Ni}^{2+}$ (pH 5 ^b)	973
Mn^{2+} > Fe ³⁺ > Co ²⁺ > Ni ²⁺ (pH 5 ^c)	973
Mn^{2+} > Co ²⁺ > Fe ³⁺ > Ni ²⁺ (pH 5 ^d)	973
$Mn^{2+} > Fe^{3+} > Cu^{2+}$	974
$Fe^{2+} > Fe^{3+} > Mn^{2+} \approx Co^{2+} > Ni^{2+}$ (pH 5.3 ^e)	697
$Fe^{3+} > Mn^{2+} > Cu^{2+}$ (pH 3-4, 5)	905
Fe^{2+} > Mn ²⁺ > Cr ³⁺ > Cu ²⁺ > Co ²⁺ > Ni ²⁺ (pH 2.5)	511
(b) Heterogeneous Catalysis	
$MnSO4$ > $MnCl2$ > $CuSO4$	945
$MnCl_2$ > CuCl ₂ \gg NaCl	238
$MgO > Fe2O3 > Al2O3 > MnO2 > PbO$	934
$MnO2$ > PbO > CuO > Fe ₂ O ₃	1025
$Mn(NO3)2 > MnCl2 > Cu(NO3)2 > MnSO4 > CuSO4 >$ CuCl ₂	239
γ -FeO(OH) > α -Fe ₂ O ₃ > γ -Fe ₂ O ₃ > δ -FeO(OH) > β -FeO(OH)	944
$CuO > Co2O3 > CoO > SiO2$	242
$MgO > CdO > SiO2$ (pH 5.3)	924
^a Metals as phthalocyanine complexes. b [Catalyst] \leq 1 \times 10^{-3} M. c [Catalyst] = 1×10^{-2} M. d [Catalyst] = 1×10^{-1} M.	

e In the presence of H_2O_2 ([H_2O_2] < [M^{n+}]).

sulfurous acid has been known.¹⁰²² Meyer⁹⁵⁸ studied for the first time in detail the effectivity of different transition metal ions in the oxidation of $\text{suffix}(\text{IV})$ oxides. In more recent literature, the catalytic activity of transition metal ions in the oxidation of sulfur- (IV) oxides is judged in different ways (Table 4.1), which is probably related to different selected reaction conditions (e.g. pH, temperature, ionic strength, presence of anions; see section **3.5).** For a comparison of the catalytic activity, one should keep in mind that if the metal ions are present in different oxidation states, e.g. **+2** and **+3,** the metal ion with the lower oxidation state must first be oxidized into the higher oxidation state in order to show catalytic activity (see section **3.3.3).**

Iron and manganese are the most effective catalysts in the oxidation of sulfur(IV) oxides in aqueous **solution.151-153,511,922** *As* mentioned before, the catalytic activity of transition metal ions depends on the pH (see ref **1026,** Table **3.2,** and Figure **3.2).** According to Graedel et al.,157 the contribution of iron(II1) and manganese(II) on the oxidation of sulfur(IV) oxides at pH 4 is $6-8\%$ ([Fe(III)] = 2×10^{-5} M) and $22-29\%$ ([Mn(II) = 2×10^{-6} M), respectively. In contrast, Cocks and McElroy⁵⁶³ report a 10 times higher oxidation rate for the iron(III)-catalyzed pathway compared to manganese(I1) catalysis at pH **4** $((Fe(III)) = 1.1 \times 10^{-6} M, [Mn(II)] = 2 \times 10^{-7} M).$ According to Warneck,¹⁰²⁷ the catalytic activity of both iron(II1) and manganese(I1) are almost equal at pH **4.** Iron(II1) has been reported to be **2** times more effective than manganese(\hat{II}) at pH $5.^{153}$ Investigations on rain water samples indicate that the pH and the iron concentration are the major factors controlling the oxidation of sulfur(IV) oxides in rain water.¹⁷¹ In contrast, Penkett et **al.172** claimed that manganese is the dominant catalyst in rain droplets, whereas iron is unimportant as a catalyst.

In order to comment on the relative contribution of iron and manganese in atmospheric oxidation of $sulfur(V)$ oxides, it should be taken into account that under atmospheric conditions $(4 \leq pH \leq 6)$ a higher rate constant for the overall oxidation process has been observed for the manganese catalysis, but the atmospheric concentration of iron is in general ca. **10** times higher than that of manganese (Tables **1.7** and **1.10).** The higher iron concentration in the atmosphere is certainly due to the higher emission quantities of iron compared to other transition metals (see Table **1.6).** Unfortunately, less data on the emitted quantities of iron are available. Nevertheless, in view of its importance compared to other oxidation pathways, the transition metal-catalyzed autoxidation of $\text{suffix}(IV)$ oxides seems to be a local phenomenon (see Figure **1.5),** which is more or less restricted to the industrialized regions. There is a certain metal background concentration also in rural areas (see Table **1.7)** and the influence of metal ions (especially the synergistic effect) on the "uncatalyzed" $oxidation of sulfur (IV) oxides still remains uncertain$ (see section **3.2).**

A comparison of rate constants for the transition metal-catalyzed oxidation of sulfur (V) oxides is only partly possible, since the reported rate constants are sometimes based on different mechanisms, or the studies have been performed with different metal salts (see section **3.5.1).** *As* shown in sections **3.3** and **3.4,** the transition metal-catalyzed oxidation of sul $fur(IV)$ oxides follows complex reaction mechanisms which are probably very sensitive to the individual reaction conditions. We do not present a comparative summary of rate laws and rate constants. This has been done by e.g. Freiberg,¹⁵² Hoffmann and Calvert,¹⁵³ Hegg and Hobbs,⁵⁷⁴ and Hoffmann and Ja- $~\cosh^{758}$

The above discussion clearly indicates that it is impossible to decide which transition metal ion is the most important catalyst during the catalytic oxidation of sulfur(N) oxides. Furthermore, the catalytic activity of a transition metal ion measured in the laboratory under known reaction conditions cannot be extrapolated to atmospheric conditions, since the overall reaction process is very sensitive to miscellaneous effects (see section **3.5)** and the presence of other oxidants like H_2O_2 , O_3 , NO_x or various radicals (see section **3.2).** The effect of organic compounds in atmospheric water (for an overview see refs **369** and 1028) on the atmospheric concentration of sulfur(IV), as well as on the overall oxidation process, is still uncertain. Formaldehyde, for instance, reacts with $HSO₃⁻$ to form hydroxymethanesulfonate in acidic water (see introduction to section **3.2).** Organic acids are strong complexing agents that can reduce the catalytic activity of the transition metals (see e.g. ref **181)** either by complexing the ion or occupying active adsorption sites.

In summary, the role of transition metals (ions as well as metal oxides and hydroxides) in the atmospheric oxidation of sulfur (IV) oxides is probably as

Transition Metal-Catalyzed Oxidation of Sulfur(lV) **Oxides**

important as the alternative oxidation routes, since each individual route does not exist on its own in an atmospheric water droplet. Thus, atmospheric water droplets can be seen as a "reaction chamber" in which all redox reactions occur simultaneously and influence each other. The contributions of the ndividual routes to the overall reaction process depends on the meterological and atmospheric conditions (see Figure **3.3** and also ref **1029).** The chemistry in a raindrop is not as important as the chemistry in cloud or fog droplets and in the water shell of aerosols, because the lifetime of the rain drop is too short. Furthermore, model calculations¹⁰³⁰ indicate that the alkaline water shell of sea salt aerosols represents an ideal medium for the oxidation of atmospheric $SO₂$ especially by ozone. Thus, the scavenging effectivity of rain drops toward atmospheric compounds also influences the composition of rain water. Here it is interesting to note that snow contained higher pre-

Table A1

cipitation-weighted mean concentrations of nitrate than did rain water in the winter, whereas the opposite occurred for sulfate.¹⁰³¹

Acknowbdgments. The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft, Bundesministerium fir Forschung und Technologie, and the Commission of the European Community (STEP Programme). We acknowledge useful discussions with Michael Schmulling and the help of Carlos Ducker-Benfer in obtaining relevant literature.

Note Added in Proof

The review covers literature up to June/July **1994.** In the Table **A.1** the most recent literature, as far as available, up to December **1994** is included. The literature is cited in the order of the sections of the review.

References

-
-
- Abel, E. *Monatsh. Chem.* **1951**, 82, 815.
Westley, F. Oxidation of sulfite ion by oxygen in aqueous
solution—a bibliography. *NBS Spec. Publ.* (U.S.) **1982**, 630, 1.
Logan, J. A. J. Geophys. Res. **1983**, 88 (C15), 10785.

- Moller, D. *Atmos. Environ.* **1984, 18,** 29. (5)
- (6) Varhelyi, G. *Atmos. Enuiron.* **1986,19,1029.**
- Muller, J.-F. J. *Geophys. Res.* **1992, 97** (D4), 3787. (7)
-
- Hameed, S.; Dignon, J. *Atmos. Environ.* **1988,22,** 441. Cullis, C. F.; Hirschler, M. M. *Atmos. Enuiron.* **1980,14,** 1263. Ibusuki, T. *Bunseki* **1986,1,** 16.
-
- Bates, T. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R.
E. J. Atmos. Chem. 1992, 14, 315.
Böttger, A.; Ehhalt, D. H.; Gravenhorst, G. Atmosphärische
Kreisläufe von Stickoxiden und Ammoniak; (Atmospheric cycles *of nitrogen acids and ammonia);* KFA Jiilich, Bericht Nr. 1558:
- Germany, 1978. Bubenick, D. V. *Acid Rain Information Book,* 2nd ed.; Noyes Publications: New Jersey, 1984.
- Ehhalt, D. D. *Ber. Bunsen-Ges. Phys. Chem.* **1992,96,** 229.
- Cachier, H.; Buat-Menard, P.; Fontugne, M.; Chesselet, R. *Tellus* **1986,38B,** 161.
- Seinfeld, J. H. *Atmospheric Chemistry and Physics of Air Pollution;* John Wiley & Sons: New York, 1986.
- (17) Warneck, P. *Chemistry of the Natural Atmosphere;* Academic Press Inc.: San Diego, 1988.
- Berresheim, H. *Atmos. Environ.* **1993,27A,** 211.
- Wayne, R. P. *Chemistry of Atmospheres;* Clarendon Press: Oxford, 1985.
- Tyndall, G. *S.;* Ravishankara, A. R. *Znt.* J. *Chem. Kinet.* **1991, 23,** 483.
- (21) Nguyen, B. C.; Mihalopoulos, N.; Putaud, J. P.; Gaudry, A.; Gallet, L.; Keene, W. C.; Galloway, J. N. J. *Atmos. Chem.* **1992, 15,** 39.
- Robinson, E.; Robbins, R. C. J. *Air Pollut. Control* **Assoc. 1970, 20,** 303.
- Lammel, G. *UWSF-Z. Umweltchem. Okotox.* **1993, 5,** 281.
- Lubkert, B.; de Tilly, S. *Atmos. Enuiron.* **1989,23,** 3. Infanger, K *Umweltschutz Schweiz* **1987,** *1,* 21.
-
- Umweltschutz in Niedersachsen. Reinhaltung der Luft, Heft 7 (Environmental protection in Niedersachsen. Keeping the air clean, Vol. 7); Niedersachsischer Minister fiir Bundesangelegenheiten (Hrsg.); Niedersachsisches Landesverwaltungsamt-Landvermessung—B5-624/82 Hannover, August 1983.
- (27) Luftreinhaltung in Nordrhein-Westfalen. Eine Erfolgsbilanz der Luftreinhalteplanung 1975-1988 (Keeping the air clean in Nordrhein-Westfalen. A **success** rating of the air cleaning plan 1975-1988); Minister fiir Umwelt, Raumordnung und Landwirtschaft des Landes Nordrhein-Westfalen (Hrsg.) Dusseldorf, Oktober 1989.
- (28) Verein Deutscher Ingenieure. Die Emission von Schwefelverbindungen. Die Entwicklung der Emissionsmengen in der Bundesrepublik Deutschland seit 1960 (Association of German Engineers. The emission of **sulfur** compounds. The development of the emission quantities in the Federal Republic of Germany); VDI Berichte Nr. 186; VDI Verlag, Dusseldorf 1972. Angerer, G. M.; Bohm, E.; Schon, M.; Totsch, W. Mbglichkeiten
- und Ausmass der Minderung luftgangiger Emissionen durch neue Umweltschutztechnologien (Possibilitites and extent of decreasing gaseous emissions through new environmental protection technology). Bericht des Fraunhofer-Institutes für Sys-
- temtechnik und Innovationsforschung, Karlsruhe 1990. Hansen, **U.;** Adolph, D.; Kim, J.-G. Poster presented on the EUROTRAC Symposium 94, 11-15 April 1994, Garmisch- (30) Partenkirchen, Germany.
- Umweltbundesamt Berlin (Germany). Personal communication, (31) 1991.
- Berlyand, M. E. J. *Atmos. Chem.* **1992,14,** 375.
- Butler, J. D. *Air Pollution Chemistry;* Academic Press: London, (33) 1979.
- Golden, J.; Ouelette, R. P.; Saari, S.; Cheremisinoff, P. N. *Environmental Impact Data Book;* **Ann** Arbor Science Publishers (34)
- Inc.: Michigan, 1979; pp 318-319. EPA. *National air quality and emissions trends report* **1984;** Publication No. EPA-450/4-86-001, **US.** Environmental Protec-
- tion Agency: Research Triangle Park, 1986. Tyson, P. D.; Kruger, F. J.; Louw, C. W. *Atmospheric Pollution and its Zmplications in the Eastern Transuaul Highveld;* South (36) African National Scientific Programs Report No. 150; Foundation
-
- of Research Development: Pretoria, South Africa, April 1988.
Ahmed, A. F. M. *Atmos. Environ*. 1990, 24A, 2917.
Filliger, P.; Rösselet, C. In *Proceedings of the EUROTRAC*
Symposium 92, Garmisch-Partenkirchen, Germany 23rd lands, 1993; pp 314-319.
- (39) Williams, M. L.; Broughton, G. F. J.; Bower, J. *S.;* Drury, V. J.; Lilley, K; Powell, K; Rogers, F. S. M.; Stevenson, K J. *Atmos.*
- Environ. 1988, 22, 2819.

(40) Moussiopoulos, N.; Pistikopoulos, P.; Tsilingiridis, G. In Proceedings of the EUROTRAC Symposium 92, Garmisch-Parten-

kirchen, Germany 23rd-27th March 1992; Borrell, P. M., Borrell, P., Cvit
- (41) Akimoto, H.; Narita, H. *Atmos. Environ.* **1994,28,** 213. (42) Aneja, V. P. J. *Air Waste Managem.* Assoc. **1990, 40,** 469.
-
- (43) Langner, J.; Rodhe, H. J. *Atmos. Chem.* **1991, 13,** 225. (44) *Climate Change* **1992,** The supplementary report to the IPCC Scientific Assessment, report prepared for the intergovernmental panel on climate change by working group I; Houghton, J. T.,
- Callender, B. A., Varney, S. K., Eds.; Cambridge University
Press: Cambridge, 1992. Cited after: *Environmental Data
Report 1993–1994*, United Nations Environment Programme;
Prepared for UNEP by the GEMS Monitoring and Ass Research Centre, London, UK, in cooperation with the World Resources Institute, Washington, DC, UK Department of Environment, London; Blackwell Publishers: Oxford, UK, 1993; pp $19 - 22.$
-
- (45) Almqvist, E. *Ambio* **1974,3,** 161. (46) Dignon, J.; Hameed, *S.* J. *Air Pollut. Control.* Assoc. **1989, 39,** 180.
- (47) Hidy, G. M. In *Chemistry of the 1owerAtmosphere;* Rasool, S. J.,
- Ed.; Plenum Press: New York, 1973; pp 121-176. (48) Andreae, M. 0.; Browell, E. V.; Garstang, M.; Gregory, G. L.; Hariss, R. C.; Hill, G. F.; Jacob, D. J.; Pereira, M. C.; Sachse, G. W.; Setzer, A. W.; SilvaDias, P. L.; Talbot, R. W.; Torres, A. L.;
- Wolsy, S. C. J. J. Geophys. Res. 1988, 93 (D2), 1509.
(49) Bluth, G. J. S.; Schnetzler, C. C.; Krueger, A. J.; Walter, L. S.
(49) Bluth, G. J. S.; Schnetzler, C. C.; Krueger, A. J.; Walter, L. S.
(50) Katsoulis, B. D.; Whe
- 2959.
- (51) Neftel, A.; Beer, J.; Oeschger, H.; Zürcher, F.; Finkel, R. C. *Nature* **1985**, 314 (6012), 611.
(52) Cullis, C. F.; Hirschler, M. M. *Educ. Chem.* **1980**, 17, 40.
-
- (53) *Environmental Data Report* **1993-1994,** United Nations Envi-ronment Programme; Prepared for UNEP by the GEMS Monitoring and Assessment Research Centre, London, UK, in coop-eration with the World Resources Institute, Washington, DC, UK Department of Environment, London; Blackwell Publish- ers: Oxford, UK, 1993; pp 44-46.
- (54) Iversen, T.; Saltbones, J.; Sandnes, H.; Eliassen, A.; Hov, 0. *Airborne transboundar transport of sulphur and nitrogen over Europe-Model descriptions and calculations;* Report No. 2/89. EMEP Meteorological Synthesizing Centre-West, PO Box 43,
Blindern, N-0313 Oslo 3, Norway. Cited after: Zlatev, Z.;
Christensen, J.; Hov, Ø. J. Atmos. Chem. 1992, 15, 1.
(55) Klimont, Z.; Amann, M.; Cofala, J.; Gyárfáš, F.;
-
-
- (56) Kato, N.; Akimoto, H. *Atmos. Enuiron.* **1992, 26A,** 2997. (57) Global Institute of Ecology and Climate, USSR, Academy of Science, Moscow, Russia. Cited after: *Environmental Data Report 1993–1994*, United Nations Environment Programme;
Prepared for UNEP by the GEMS Monitoring and Assessment
Research Centre, London, UK, in cooperation with th Resources Institute, Washington, DC, UK Department of Envi-ronment, London; Blackwell Publishers: Oxford, LJK, 1993; pp 44-46.
- (58) Bundesamt fiir Umweltschutz Bern (Ed.). Emissionen von luftverunreinigenden Stoffen **aus** naturlichen Quellen in der Schweiz (State Department for Environmental Protection Bern. Emission of air polluting substances from natural sources in Switzerland); Schriftenreihe Umwelschutz Nr. 75, Bundesamt
- für Umweltschutz Bern (Switzerland), November 1987.

(59) Hegg, D. A.; Radke, L. F.; Hobbs, P. V.; Rasmussen, R. A.; Riggan, A. J. J. Geophys. Res. 1990, 95 (D5), 5669.

(60) Cofer, W. R., III; Levine, J. S.; Winstead, E.
- *Nature* **1991,349** (6311), 689.
-
-
- (61) Bónis, K.; Mészáros, E.; Putsay, M. *Idöjárás* **1980**, *84*, 57.
(62) Veldt, C. *Atmos. Environ.* **1991**, 25A, 2683.
(63) Brandt, Ch.; Lepentsiotis, V.; Paul, A.; Hohmann, H.; van Eldik, R. *GZT* **1994,38,** 770.
-
- (64) Miller, D. F.; Flores, M. *Atmos. Enuiron.* **1992, 26A,** 345. (65) Burkhard, E. G.; Dutkiewicz, V. A,; Husain, L. *Atmos. Enuiron.* **1994, 28,** 1521. (66) Putaud, J. P.; Mihalopoulos, N.; Nguyen, B. C.; Campin, J. M.;
- Belviso, S. J. *Atmos. Chem.* **1992, 15,** 117.
- (67) Nguyen, B. C.; Bonsang, B.; Lambert, G. *Tellus* **1974,26,** 241.
- (68) Rodhe, H.; Granat, L. *Idöjárás* **1983**, 87, 1.
(69) Cadle, S. H.; Muhlbaier, J.; Mulawa, P. A. At (69) Cadle, S. H.; Muhlbaier, J.; Mulawa, P. A. *Atmos. Environ.* **1986,**
- **19,** 1819. 159. (70) Sigg, L.; Stumm, W.; Zobrist, J.; Zurcher, F. *Chimia* **1987, 41,**
- 1972,44,2070. (71) Bruner, F.; Liberti, A.; Possanzini, M.; Allegrini, I. *Anal. Chem.*
- *Chem.* **1992,15,** 369. (72) Papenbrock, Th.; Stuhl, F.; Miiller, K P.; Rudolph, I. J. *Atmos.*

Transition Metal-Catalyzed Oxidation of Sulfur(lV) Oxides

- **(73)** Savoie, D. L.; Prospero, J. M.; Larsen, R. J.; Huang, F.; Izaguirre, M. A,; Huang, T.; Snowdon, T. H.; Custals, L.; Sanderson, C. G. *J. Atmos. Chem.* **1993,** *17,* **95.**
- **(74)** Solomon, P. A.; Moyers, J. L. *Atmos. Enuiron.* **1986,20, 207.**
- **(75)** Meixner, F. **X.;** Miiller, K. P.; Aheimer, G.; Hoflcen, K. D. In *Physico4emical Behuuwur OfAtmospheric Pollutants;* **De** Leeuw, F. A. A. M., van Egmond, N. D., Eds.; COST Action **611,** Proc. Workshop Pollut. Cycles Transport-Modelling Field Experi-ments, Bilthoven, The Netherlands; Office for Official Publications of the European Community: Luxemborg, **1985;** pp **103- 114.**
- **(76)** Bower, J. S.; Broughton, G. F. J.; Stedman, J. R.; Williams, M. L. *Atmos. Enuiron.* **1994,28, 461.**
- **(77)** Bower, J. S.; Broughton, G. F. J.; Dando, M. T.; Lees, A. J.; Stevenson, K. E.; Lampert, J. E.; Sweeny, B. P.; Parker, V. J.; Driver, G. S.; Waddon, C. J.; Wood, A. J. *Atmos. Enuiron.* **1991, 25B, 267.**
- **(78)** Cambbell, **G.** W.; Stedman, J. R.; Stevenson, K. *Atmos. Enuiron.* **1994,28, 477.**
- **(79)** Galloway, J. N.; Whelpdale, D. M. *Atmos. Environ.* **1980, 14, 409.**
- **(80)** World Meteorology Organization, Joint UN response to the Kuwait oil fires, Report, Geneva, Switzerland **1991.** Cited after: Parungo, F.; Kopcewicz, B.; Nagamoto, C.; Schnell, R.; Sheridan, P.; Zhu, C.; Harris, J. *J. Geophys. Res.* **1992,97 (D14),** 15867.
 (81) Ellermann,
- **(81)** Ellermann, K. Limes Jahresbericht **1991.** Reihe A-Staubniederschlag und Inhaltsstoffe. Landesamt **fiir** Imissionsschutz Nordrhein-Westfalen, Essen, Germany, **1993** (Limes yearly report **1991,** series A, Dust precipitates and content, State Department for Emission control Nordheim-Westfalen).
- **(82)** Albers, H. *Energie* **1986, 38, 42.**
- **(83)** Statistisches Bundesamt (Hrsg.), Statistisches Jahrbuch **1992 fiir** die Bundesrepublik Deutschland. Statistisches Bundesamt, Wiesbaden, Germany (Federal Bur. of Statistics, Statistical Year
- Book **1992** for the Federal Republic of Germany). **(84)** Eggleston, S.; Hackman, M. P.; Heyes, C. A.; Irwin, J. G.; Timmis, R. J.; Williams, M. L. *Atmos. Enuiron.* **1992,26B, 227.**
- **(85)** Statistisches Bundesamt (Hrsg.), Statistisches Jahrbuch **1992 fiir** das Ausland. Statistisches Bundesamt, Wiesbaden, Ger-many (Federal Bur. of Statistics, Statistical Year Book **1992** for foreign countries).
- **(86)** Khemani, L. T. *Indian J. Radio Space Phys.* **1993,22, 207.**
- **(87)** Gschwandtner, G.; Gschwandtner, K.; Eldridge, K.; Mann, C.; Mobley, D. *J. Air Poll. Control. Assoc.* **1986, 36 (2), 139.**
- **(88)** *EPA National air pollutant emission estimates,* **1940-1976;** Publication No. **EPA-450/1-78-003; US.** Environmental Protection Agency: Research Triangle Park, NC, **1978. (89)** Butler, T. J.; Likens, G. E. *Atmos. Enuiron.* **1991,25A, 305.**
-
- **(90)** Voldner, E. C.; Alvo, M. *Enuiron. Sci. Technol.* **1993, 27, 292. (91)** Dillon, P. J.; Lusis, M.; Reid, R.; Yap, D. *Atmos. Environ.* **1988,**
- **22, 901.**
- **(92)** Wolff, E. W.; Peel, D. A. *Nature* **1985,313 (60031, 535. (93)** Goldberg, E. D.; Hodge, V.; Roide, M.; Griffin, J. J. *Geochem. J.* **1976,** *10,* **165.**
- **(94)** Hirao, Y.; Matsumoto, E.; Todoroki, H.; Imamura, T.; Fukuda, E.; Kimura, K. *Geochem. J.* **1983,17, 19.**
- **(95)** Cole, K. L.; Engstrom, D. R.; Futyma, R. P.; Stottlemyer, R. *Environ. Sci. Technol.* **1990,24, 543.**
- **(96)** Cragin, J. **H.;** Herron, M.; Langway, C. C., Jr. **US.** Army Cold Regions Research & Engineering Laboratory, Hanover, NH. Cited after: Likens, G. E. *Chem. Eng. News* **1976, 54 (481, 29.**
- **(97)** Herron, **M.** M. *J. Geophys. Res.* **1982, 87 (C4), 3052. (98)** Ross, R. D. *Air Pollution and Industry;* Van Nostrand Reinholdt
- Company: New York, **1972. (99)** Ellis, J. H. *Environ. Sci. Technol.* **1988,22, 1248.**
- **(100)** Chang, V. S.; Shin, W.-C.; Carmichael, G. R.; Kurita, H.; Ueda, H. *Enuiron. Sci. Technol.* **1990,24, 1355.**
- **(101)** Hardijk, L. *Environ. Sci. Technol.* **1991,25, 596.**
- **(102)** Schulze, R. H. *Atmos. Enuiron.* **1993,27B, 15.**
- **(103)** Salmon, L.; Atkins, D. H. F.; Fisher, E. M. R.; Healy, C.; Law, D. V. *Sci. Total Enuiron.* **1978, 9, 161.**
- **(104)** Anonymus. *Schornsteinfegerhandwerk* **1989,43, 3.**
- **(105)** Natusch, D. F. S.; Bauer, C. F. **InAir** *Pollution Control;* Strauss, W., Ed.; J. Wiley & Sons: New York, **1978;** Part 111, pp **217- 315.**
- **(106)** Jaenicke, R. in *Formation, Distribution and Chemical Transformation of Air Pollutants;* Zellner, R., Ed.; Dechema Mono-graphs 104; Verlag Chemie: Weinheim, Germany, **1987;** pp **127-146.**
- **(107)** Robinson, E.; Robbins, R. C. *Emission Concentration and Fate of Particulate Atmospheric Pollutants;* Final Report, SRI Project **SCC-8507;** Stanford Research Institute: Menlo Park, CA, **1971.**
-
- (108) Peterschuk, O. P. J. Geophys. Res. 1980, 85 (C12), 7439.
(109) Peterson, J. T.; Junge, C. E. In Man's Impact on the Climate;
(109) Peterson, J. T.; Junge, C. E. In Man's Impact on the Climate;
Matthews, W. H., Kellog
- **(110)** United Nations. *Fine Particulate Pollution;* Pergamon Press: Oxford, **1979.**
- **(111)** SMIC Inadvertent Climate Modification. *Report of the Study of Man's Impact on Climate;* MIT Press: Cambridge, MA, **1971.**
- **(112)** Vandegraft, A. E. Fine particle emissions particulate pollutant system study. Vol. **2,** MRI Contract **EPA-22-69-104,1971.** Cited after: United Nations. *Fine Particulate Pollution;* Pergamon
- Press: Oxford, New York, **1979;** p **72. (113)** Lee, R. E., Jr.; Duffield, F. V. In *Ultratrace Metal Analysis in Biological Sciences and Environment;* Risby, T. H., Ed.; Advances in Chemistry Series **172;** American Chemical Society: Washington, DC, **1979;** pp **146-171.**
- (114) *EPA Air quality criteria for particulate matter and sulfur oxides*;
Publication No. EPA-600/8-82-029; U.S. Environmental Protection Agency: Research Triangle Park, NC, 1982.
(115) Akeredolu, F. Atmos. Environ. 1989
-
- **(116)** Lipfert, **F.** W.; Morris, **S.** C.; Wyzga, R. E. *Enuiron. Sci. Technol.* **1989,23, 1316.**
-
-
- (117) Jaenicke, R. *J. Aerosol. Sci.* **1980**, *11*, 577.
(118) Nriagu, J. O. *Nature* **1979**, 279 (5712), 409.
(119) Mukai, H.; Furuta, N.; Fujji, T.; Ambe, Y.; Sakamoto, K.; **(120)** Stigliani, W. M.; Jd6, P. R.; hderberg, S. *Enuiron. Sci. Technol.* Hashimoto, Y. *Environ. Sci. Technol.* **1993,27, 1347.**
- **1993,27, 786.**
- **(121)** Loranger, S.; Zayed, J. *Atmos. Environ.* **1994,28, 1645. (122)** Nriagu, J. 0. *Nature* **1989,338 (62101, 47.**
-
- (123) Pacyna, J. M. In Atmospheric Pollution; Pickett, E. E., Ed.;
Springer Verlag: Berlin, 1987; pp 29–56.
(124) Lantzy, R. J.; Mackenzie, F. T. Geochim. Cosmochim. Acta 1979,
- **43, 511.**
- **(125)** Pacyna, J. M.; Semb, A.; Hanssen, J. E. *Tellus* **1984,36B, 163.**
- **(126)** Bertine, K. K.; Goldberg, E. D. *Science* **1971, 173 (3993), 233. (127)** Galloway, J. N., Eisenreich, S. J., Scott, B. C., Eds. *Toxic substances in atmospheric deposition: A review and assessment;* National Atmospheric Deposition Program Rep. **NC-141;** University of Virginia: Charlottesville, 1980. Cited after: Galloway, J. N.; Thornton, J. D.; Norton, S. **A.;** Volchok, H.; McLean, R. A. N. *Atmos. Enuiron.* **1982,** *16,* **1677.**
- **(128)** Andres, R. J.; Kyle, P. R.; Chuan, R. L. *Geol. Rundsch.* **1993, 82, 687.**
-
- (129) Nriagu, J. O.; Pacyna, J. M. Nature 1988, 333 (6169), 134.
(130) Boutron, C. F.; Wolff, E. W. Atmos. Environ. 1989, 23, 1669.
(131) Pacyna, J. M. Atmos. Environ. 1984, 18, 41.
-
- **(132)** Sabbioni, E.; Goetz, L.; Sprinker, A,; Pietra, R. *Sci. Total Enuiron.* **1983,29, 213.**
- **(133)** Sabbioni, E.; Goetz, L.; Bignoli, G. *Sci. Total Environ.* **1984,40, 141.**
- (134) Pacyna, J. *Trace element emissions from coal-, and oil-fired power plants in Europe. Methodology of calculations;* NILU Supplement til NILU Teknisk Rapport **5/82;** Norwegian Institute for **Air** Research: Lillestrgm, Norway, December, **1982.**
- **(135)** Pacyna, J. *The spatial distribution of the trace element emission from conventional thermal power plants in Europe;* NILU Teknisk Rapport **5/82;** Norwegian Institute for Air Research: Lillestrgm, Norway, October, **1982.**
- **(136)** Brumsack, H. J.; Forstner, U.; Heinrichs, H. *Chemiker-Zeitung* 1983, 107, 161
- **(137)** Barniske, L.; Vosskohler, H. *Mull Abfall* **1980, 12, 263.**
- **(138)** Umweltbundesamt, Berlin (Germany), personal communication. **(139)** Jockel, W. *Entsorgungsprwis* **1993, 10/93, 716.**
- **(140)** Lobel, J. In *Atmospharische Spurenstoffe und ihr physikalisch chemisches Verhalten (Atmospheric trace elements and their* physical chemical behavior); Becker, K. H., Löbel, J., Eds.;
Springer Verlag: Berlin, 1985; pp 1-10.
(141) Brunner, P. H.; Zobrist, I. *Müll Abfall* 1983, 15, 221.
(142) Gomes, L.; Bergametti, G.; Chatenet, B.; Dutot, A. L
-
- *Technol. Lett.* **1988, 9, 721.**
- **(143)** Pacyna, J. M. In *Advances in Environmental Science and Technology;* Nriagu, J. *O.,* Davidson, G. I., Eds.; J. Wiley & Sons: New York, **1986;** Vol. **17** (Toxic metals in the atmosphere), **44)** Goldberg, A. J. *A survey of emissions and controls for hazardous* pp **1-32.**
- and other pollutants; EPA Report PB-223568; U.S. Environmental Protection Agency, Office of Research and Monitoring: Washington, DC, Feb 1973. Cited after: Lim, M. Y. Trace elements from coal combustion-attmospheric emissi
- **45)** Winchester, J. W.; Nifong, G. D. *Water Air Soil Pollut.* **1971, 1,**
- 50.

46) Flinn, J. E.; Reimers, R. S. Development of predictions of future

pollution problems; EPA Report No. 600/5-74-005, 1974; pp 36–

38. Cited after: Lee, R. E., Jr.; Duffield, F. V. In Ultra Trace
 Metal Analysis i American Chemical Society: Washington, DC, **1979;** pp **146- 171.**
- **(147)** Cass, G. R.; McRae, G. J. *Enuimn. Sci. Technol.* **1983,17, 129.**
- **(148)** Taylor, G. J.; Crowder, **A.** A. *Water Air Soil Poll.* **1983, 19, 29.**
- **(149)** Pacyna, J. M. *Estimation of emission factors of trace metals from oil-fired powerplants;* NILU Teknisk Rapport Nr. **2/82;** Norwe-gian Institute for **Air** Research Lillestrem, Norway, May **1982.**
- **(150)** Gatz, D. F. *Atmos. Environ.* **1976, 9, 1.**
- **(151)** Bassett, H.; Parker, W. A. *J. Chem. SOC.* **1961, 1540.**
- **(152)** Freiberg, J. *Atmos. Enuiron.* **1976, 9, 661.**
- **(153)** Hoffmann, M. R.; Calvert, J. G. *Chemical transformation modules for eulerian acid deposition models. Vol. II. The Aqueous Phase Chemistry;* Publication No. **EPA-600/3-85/017;** U.S. Environmental Protection Agency: Research Triangle Park, NC, **1985.**
- **(154)** Waldman, J. M.; Munger, J. W.; Jacob, D. J.; Flagan, R. C.; Morgan, J. J.; Hoffmann, M. R. *Science* **1982,218 (4573), 677.**
- **(155)** Galloway, J. N.; Thomton, J. D.; Norton, S. A.; Volchok, H.; McLean, R. A. N. *Atmos. Enuiron.* **1982,16, 1677.**
- **(156)** Jacob, D. J.; Waldman, J. M.; Munger, J. W.; Hoffmann, M. R. *Enuiron. Sci. Technol.* **1986, 19, 730.**
- **(157)** Graedel, T. E.; Mandich, M. L.; Weschler, C. J. *J. Geophys. Res.* **1986,91 (D4), 5205.**
- (158) Wiersma, G. B.; Davidson, C. I. In Advances in Environmental Science and Technology; Nriagu, J. O., Davidson, C. I., Eds.; J. Wiley & Sons: New York, 1986; Vol. 17 (Toxic metals in the atmosphere), pp $201-266$.
- **(159)** Schroeder, W. H.; Dobson, M.; Kane, D. M.; Johnson, N. D. *J. Air Poll. Control Assoc.* **1987**, 37, 1267.
- (160) Barrie, L. A.; Lindberg, S. E.; Chou, W. H.; Ross, H. B.; Arimoto, R.; Church, T. M. *Atmos. Enuiron.* **1987,21, 1133.**
- **(161)** Veron, A.; Church, T. M.; Patterson, C. C.; Erel, Y.; Merrill, J. T. *J. Atmos. Chem.* **1992, 14, 339.**
- **(162)** Huebers, H. A. In *Metals and Their Compounds in the Enuironment: Occurrance, Analysis, and Biological Relevance;* Merian, E., Ed.; Verlag Chemie: Weinheim, Germany, **1991;** pp **945- 958.**
- **(163)** Hillamo, R. E.; Kerminen, V.-M.; Maenhaut, W.; JaRrezo, J.-L.; Balachandran, S.; Davidson, C. I. *Atmos. Enuiron.* **1993,27A,**
- 2787.

(164) Duce, R. A.; Hoffmann, G. L.; Ray, B. J.; Fletcher, I. S.; Wallace,

G. T.; Fasching, J. L.; Piotrowicz, S. R.; Walsh, P. R.; Hoffmann,

E. J.; Miller, J. M.; Heffter, J. L. In *Marine Pollutant Transfer*; Windon, H. L., Duce, R. A., Eds.; Lexington Books: Toronto, **1976;** pp 77-119.
- **(165)** Lee, R. E.; van Lehmden, D. J. *J. Air Pollut. Control. Assoc.* **1973, 23, 853.**
- **(166)** Schiele, R. In *Metals and Their Compounds in the Environment Occurrance, Analysis, and Biological Relevance;* Merian, E., Ed.; Verlag Chemie: Weinheim, Germany, **1991;** pp **1035-1044.**
- **(167)** EPA. *Air quality data for metals from the National Air Surueillance Network;* Publication No. **EPA-600/4-79-054;** U.S. Environmental Protection Agency: Research Triangle Park, NC, **1979.**
- **(168)** Georgii, H.-W.; Perseke, C.; Rohbock, E. *Feststellung der Deposition uon sauren und langzeitwirksamen Luftuerunreinigungen aus Belastungsgebieten. Teil A: Depositionsmessungen in der Bundesrepublik Deutschland (Determination of the deposition of acids and long time effective air pollutants from polluting areas. Part A. Deposition measurements in the Federal Republic Germany);* Umweltbundesamt Berlin, Forschungsbericht **104 02 600** UBA-FB **82-064,** Erich Schmidt Verlag: Berlin, **1983.**
- **(169)** Hofmann, H.; Hoffmann, P.; Lieser, K. H. *Fresenius J. Anal. Chem.* **1991,340, 591.**
- **(170)** Cawse, P.; Peirson, D. H. *An analytical study of trace elements in the atmospheric enuironment;* Atomic Energy Research Establishment, AERE-R 7134: Harwell, England, 1972.
- **(171)** Radojevic, M.; Clarke, A. G. In Acid Rain: Scientific and Technical Advances. Based on Papers presented at the Acid Rain Conference in Lisbon, **1.-3.** Sept. **1987.** Perry, R.; Harri-son, R. M.; Bell, J. N. B.; Lester, J. N. (eds.) Publications Division, Selpter Ltd., London **1987,** pp **67-74.**
- **(172)** Penkett, *S.* A.; Jones, B. M. R.; Eggleton, A. E. J. *Atmos. Enuiron.* **1979, 13, 139.**
- **(173)** Balls, P. W. *Atmos. Enuiron.* **1989.23, 2751.**
- **(174)** Peirson, D. H.; Cawse, P. A.; Salmon, L.; Cambray, R. *S. Nature* **1973**, 241 (5387), 252.
- **(175)** Gravenhorst, G.; Beilke, S.; Betz, M.; Georgii, H.-W. In *Effects of Acid Precipitation on Terrestrial Ecosystems;* Hutchinson, T. C., Havas, M., Eds.; Plenum Publishing Corporation: New York, 1980; pp 41-55.
- **(176)** Betz, **M:** Diplomarbeit, Institut fiir Meteorologie und Geophysik **(177)** Beavington, F.; Cawse, P. A. *Sci. Total Enuiron.* **1979,13,263.** der Universitat Frankfurt/Main, Germany, September **1976.**
- **(178)** Jacob, D. J.; Waldman, J. M.; Munger, W.; Hoffmann, M. R.
- **(179)** Munger, W.; Jacob, D. J.; Waldman, J. M.; Hoffmann, M. R. *J. Tellus* **1984, 36B, 272.** *Geophys. Res.* **1983,88** (C9), **5109.**
- **(180)** Joos, **F.;** Baltensperger, U. *Atmos. Enuiron.* **1991,25A, 217.**
- **(181)** Kotronarou, A.; Sigg, L. *Enuiron. Sci. Technol.* **1993,27, 2725.**
- **(182)** Hosono, T.; Okochi, H.; Igawa, M. *Bull. Chem. SOC. Jpn.* **1994, 67, 368.**
- **(183)** Waldman, J. **M.;** Munger, J. W.; Jacob, D. J.; Hoffmann, M. R. *Tellus* **1986,37B, 91.**
- **(184)** Bizjak, **M.;** Divjak, B.; Kozak-Legriia, E.; Poje, M.; Hudnik, V. *GDF93: Aerosol black carbon (soot) and cloud water transition*

metal concentration; Poster presented on the EUROTRAC Symposium **94, 11-15** April **1994,** Garmisch-Partenkirchen, Germany.

- **(185)** Fenelly, P. F. *J. Air Pollut. Control Assoc.* **1976,25, 697.**
- **(186)** Sweet, C. W.; Vermette, *S.* J.; Landsberger, S. *Enuiron. Sci.*
- *Technol.* **1993,27, 2502. (187)** Graedel, T. E.; Weschler, C. J. *Rev. Geophys. Space Phys.* **1981, 19, 505.**
- **(188)** Jaenicke, R. *Russ. Chem. Rev.* **1990,** *59,* **959.**
- **(189)** Whitby, **K** T. *Atmos. Enuiron.* **1978, 12, 135.**
- **(190)** Shaw, R. W. *Spektrum der Wissenschaft* **1987,10/87, 100.**
- **(191)** Junge, C.; Scheich, G. *Atmos. Enuiron.* **1969, 3, 423.**
- **(192)** Gravenhorst, G. Berichte des Instituts fiir Meteorologie und Geophysik der Universität Frankfurt/Main (Germany), 1975; No.
30
- **30. (193)** Muller, J. In *Deposition of Atmospheric Pollutants;* Georgii, H. W., Pankrath, J., Eds.; D. Reidel Publishing Company: Dordrecht, The Netherlands, **1982;** pp **43-52.**
- **(194)** Larson, **S.;** Cass, G.; Hussey, K.; Luce, F. *Visibility model verification by image processing techniques;* Final Report to the State of California Air Resources Board under Agreement *A2-* **077-32, 1984.**
- **(195)** Hanst, P. L.; Wang, N. W.; Bragin, *J.Atmos. Enuiron.* **1982,16, 969.**
- **(196)** Tuazon, E. C.; Winer, A. M.; Pitts, J. N., Jr. *Enuiron. Sci. Technol.* **1981,** *15,* **1232.**
- **(197)** Wagner, H. M. *Bundesgesundheitsblatt* **1991, 34, 161.**
- **(198)** Georgii, H.-W. In *Atmosphurische Spurenstofe und ihr physikalisch-chemisches Verhalten (Atmospheric trace substances and their physical chemical behauior);* Becker, K. H., Lobel, J., Eds.;
- Springer-Verlag: Berlin, Heidelberg, **1985;** pp **129-152. (199)** Lin, J.-M.; Fang, G.-C.; Holsen, T. M.; Noll, K E. *Atmos. Enuiron.* **1993,27A, 1131.**
- **(200)** Tsunogai, *S. Geochem. J.* **1971,5, 175.**
- **(201)** Jaenicke, R. In *Aerosols: Anthropogenic and Natural, Sources and Transport;* Kneip, T. J., Lioy, P. J., Eds. *Ann. N.Y. Acad. Sci.* **1980,338, 317-329.**
- **(202)** Hodge, V.; Johnson, *S.* R.; Goldberg, E. D. *Geochem. J.* **1978, 12, 7.**
- **(203) MeszAros,** E. *Idojciras* **1971, 75, 308.**
- **(204)** Ahlberg, M. **S.;** Winchester, J. W. *Atmos. Enuiron.* **1978, 12, 1631.**
- **(205)** Koutrakis, P.; Wolfson, J. M.; Spengler, J. D.; Stem, B.; Franklin, C. A. *J. Geophys. Res.* **1989,94** (D5), **6442.**
- **(206)** Pilinis, C.; Seinfeld, J. H.; Grosjean, D. *Atmos. Enuiron.* **1989, 23, 1601.**
- **(207)** Koutrakis, P.; Kelly, B. P. *J. Geophys. Res.* **l993,98 (D4), 7141.**
- **(208)** Giorgi, F.; Chameides, W. L. *J. Geophys. Res.* **1986, 97** (DlO), **10449.**
- **(209)** Rose, W. J.; Hoffmann, M. F. In *Atmospheric Effects and Potential Climatic Impact of the* **1980** *Eruptions of Mount St. Helens;* NASA Conf. Publ. **2240, 1982;** pp **1-10,**
- **(210)** Rani, A.; Prasad, D. S. N.; Madnawat, P. V. S.; Gupta, K. *S. Atmos. Enuiron.* **1992,26A, 667.**
- **(211)** Singer, A.; Shamay, Y.; Fried, M. *Atmos. Enuiron.* **1993,27A, 2287.**
- **(212)** Shaw, F. M.; Eng, C.; Mech, M. J. *Br. Foundryman* **1972, 65,** 90.
- **(213)** Williams, P. T.; Radojevic, M.; Clarke, A. G. *Atmos. Enuiron.* **1988,22, 1433.**
- **(214)** Low, G. K.-C.; Batley, G. E. *Enuiron. Sci. Techml.* **1988,22,322.**
- **(215)** Kauppinen, E. J.; Pakkanen, T. A. *Enuiron. Sei. Technol.* **1990, 24, 1811.**
- **(216)** Gund, G.; Wien, F.; Weisweiler, W. *Fresenius J. Anal. Chem.* **1991, 340, 616.**
- **(217)** Talbot, R. W.; Andreae, M. 0.; Berresheim, H.; **Artaxo,** P.; Garstang, M.; Harriss, R. C.; Beecher, K. M.; Li, S.-M. *J. Geophys. Res.* **1990,95** (DlO), **16955.**
- **(218)** Talbot, R. W.; Vijgen, A. S.; Harriss, R. C. *J. Geophys. Res.* **1992, 97 (D15), 16531.**
- **(219)** Watson, J. G., Jr. Ph.D. Thesis, Oregon Graduate Center, Beaverton, OR, **1979.** Cited after: Cass, G. R.; McRae, G. J. *Enuiron. Sci. Technol.* **1983, 17, 129.**
- **(220)** Taback, H. J.; Brienza, A. R.; Macke, J.; Brunetz, N. *Fine particle emissionsfrom stationary and miscellaneous sources in the South Coast Air Basin;* Report KVB **5806-783;** KVB Inc.: Tustin, CA, **1983.** Cited after: Cass, G. R.; McRae, G. J. *Enuiron. Sei. Technol.* **1983, 17, 129.**
- **(221)** Henry, W. M.; Knapp, K. T. *Enuiron. Sei. Technol.* **1980,14,450.**
- **(222)** Dzubay, T. G.; Stevens, R. K.; Lewis, C. W.; Hem, D. H.; Courtney, W. J.; Tesch, J. W.; Mason, M. **A.** *Enuiron. Sci. Technol.* **1982, 16, 514.**
- **(223)** Li, S.-M.; Winchester, J. W. *J. Geophys. Res.* **1990,95 (D2), 1797.**
- **(224)** Losno, **R.;** Bergametti, G.; Carlier, P. *J. Atmos. Chem.* **1992,15, 333.**
- **(225)** Hidy, G. M., Mueller, P. K., Grosjean, D., Appel, B. R., Wesolowski, J. J., Eds. *The Character and Origins of Smog Aerosols;* John Wiley & Sons: New York, **1980.**
- (226) Mészáros, E. Atmospheric Chemistry. Studies in Environmental Science **11;** Elsevier Scientific Publishing Company: Amsterdam, **1981.**
-
- (227) Niessner, R. Angew. Chem. **1991**, 103, 542.
(228) Jaenicke, R. In Atmosphärische Spurenstoffe: Ergebnisse aus dem gleichnamigen Sonderforschungsbereich (Atmospheric trace substances: Results from the special research program); DFG Deutsche Forschungsgemeinschaft; Jaenicke, R., Hrsg.; Verlag Chemie: Weinheim, Germany, **1987;** pp **321 -329.**
- **(229)** Spurny, K. R. In Atmospharische Spurenstoffe und ihr physikalisch chemisches Verhalten (Atmospheric trace substances and their physical chemical behaviors); Becker, K. H., Löbel, J., Eds.;
- Springer Verlag: Berlin, **1985;** pp **92-128. (230)** Ho, W.; Hidy, G. M.; Govan, R. M. J. Appl. Meteorol. **1974, 13, 871.**
- **(231)** Winkler, P. In Chemistry *of* Multiphase Atmospheric Systems; Jaeschke, W., Ed.; NATO ASI Šeries, Serie G: Ecological
Sciences; Springer Verlag: Berlin, 1986; Vol. 6, pp 269–298.
- **(232)** Liberti, A.; Brocco, D.; Possanzini, M. Atmos. Environ. **1978,12,**
- **255. (233)** Clarke, A. G.; Williams, P. T. Atmos. Environ. **1983, 17, 607.**
- **(234)** Eggleton, A. **E.** J.; Atkins, D. H. Results *of* the tees-side investigation; Atomic Energy Research Establishment AERE-R **6983.** Hanvell. Eneland. **1972.**
- (235) Matteson, M. J.; Stöber, W.; Luther, H. Ind. Eng. Chem. Fundam. **1969,8,677.**
- **(236)** Robinson, R. A.; Stokes, R. H. Electrolyte Solutions; Butterworth: London, 1970.
- (237) Cohen, M. D.; Flagan, R. C.; Seinfeld, J. H. J. Phys. Chem. 1987, **91.4563.**
- **(238)** Cheng, R. **T.;** Frohliger, J. *0.;* Corn, M. J. Air Poll. Control Assoc. **1971,21, 138.**
- **(239)** Berresheim, H.; Jaeschke, W. J. Atmos. Chem. **1986,4, 311.**
- Cohen, S.; Chang, S.-G.; Markowitz, S. S.; Novakov, T. Environ.
- .. Sei. Technol. **19g1, 15, '1498.**
- **(241)** Chun, K. C.; Quon, J. E. Environ. Sci. Technol. **1973, 7, 532. (242)** Prasad, D. S. N.; Rani, A.; Gupta, K. S. Enuiron. Sei. Technol.
- **(243)** Jacob, D. J.; Hoffmann, M. R. J. Geophys. Res. **1983,88 (Cll), 1992,26, 1361.**
- **(244)** Hales, **J.** M. Atmos. Environ. **1972,** *6,* **635. 6611.**
- **(245)** Walcek, C. J.; Pruppacher, H. R. J. Atmos. Chem. **1984,** *I,* **269.**
- **(246)** Mitra, S. K.; Hannemann, A. U. J. Atmos. Chem. **1993,16,201.**
- **(247)** Schurath, **U.** In Atmospharische Spurenstoffe und ihr physikalisch-chemisches Verhalten (Atmospheric trace substances and their physical chemical behaviors); Becker, K. H., Löbel, J., Eds.;
- Springer Verlag: Berlin, **1985;** pp **59-76. (248)** Davis, D. D.; Klauber, G. Int. J. Chem. Kinet., Symp. I **1975, 543.**
- **(249)** Rahn, K. A.; Lowenthal, D. H.; Harris, J. M. Atmos. Environ. **1989,23,2597.**
- **(250)** Tarrason. L.: Iversen. T. Tellus **1992.44B. 114.**
- **(251)** Erismm,'J. **W.;** de Leeuw, F. A. A. M:; van Aalst, R. M. Atmos. Environ. **1989,23, 1051.**
- **(252)** Ruijgrok, W.; Romer, F. G. Atmos. Environ. **1993,27A, 637.**
- **(253)** Rodhe, H. Tellus **1972.24, 128.**
- **(254)** Ebel, A. Naturwissenschaften **1994,81, 49.**
- **(255)** McMahon, T. A.; Denison, P. J. Atmosphere **1979, 13, 571.**
- **(256)** Georgii, H.-W.; Pankrath, J. Deposition *of* Atmospheric Pollutants; D. Reidel Publishing Company: Dordrecht, The Netherlands, **1982.**
- **(257)** Herbert, F. In Atmospharische Spurenstoffe: Ergebnisse aus dem gleichnamigen Sonderforschungsbereich (Atmospheric trace substances. Results from the special research program); DFG Deutsche Forschungsgemeinschaft; Jaenicke, R., Ed.; Verlag Chemie: Weinheim, **1987;** pp **241-269. (258)** Hicks, B. B.; Hosker, R. P., Jr.; Womack, J. D. In The Chemistry
- *of* Acid Rain. Sources and Atmospheric Processes; Johnson, R. W.. Gordon. G. E.. Callins. W.. Elzerman. A. Z.. Eds.: ACS Symposium Series 349; American Chemical Society: Washing-
- ton, DC, **1987;** pp **196-203. (259)** Erisman, J. W.; Beier, C.; Draaijers, G.; Lindberg, S. Tellus **1994,** *A6R* - --, **79** . - . **(260)** Freedman, B.; Hutchinson, T. C. Can. J. Bot. **1980, 58, 108.**
-
- **(261)** Ronneau, C.; Hallet, J.-Ph. In Acid Deposition, Proceedings of the CEC Workshop organized as part of the concerted action "Physico-Chemical Behaviour of Atmospheric Pollutants", Berlin, **9.** September **1982;** Beilke, S., Elshout, A. J., Eds.; D. Reidel
-
- Publishing Company: Dordrecht, 1983; pp 149-154.

(262) Floyd Phillips, S.; Wotton, D. L.; McEachern, D. B. Water Air

Soil Poll. 1986, 30, 253.

(263) Landsberger, S.; Vermette, S. J.; Drake, J. J. In The chemistry

of a
-
-
-
- Cawse, P. A. A survey *of* atmospheric trace elements in the *UX.* **(267) (1972-1973);** Atomic Energy Research Establishment, AERE-R **7669,** Harwell, England, **1974.**
- Jefies, D. S.; Snyder, W. R. Water Air Soil Poll. **1981,15, 127.**
- Puxbaum, **H.;** Rosenberg, C.; Ober, E.; Gregori, M. Staub **1989, 49, 169.**
- Galloway, J. N.; Dianwu, Z.; Jiling, **X.;** Likens, G. E. Science **1987,236 (4808), 1559.**
- (271) Voldner, **E.** C.; Barrie, L. A.; Sirois, A. Atmos. Environ. **1986, 20, 2101.**
- Zhang, **X.;** Arimoto, R.; *An,* Z.; Chen, T.; Zhang, G.; Zhu, G.; Wang, **X.** Atmos. Environ. **1993,27A, 2051.**
- (273) Injuk, J.; van Malderen, H.; van Grieken, R. In Photo-oxidants: Precursors and products, Proceedings of EUROTRAC Symposium **92,** Garmisch-Partenkirchen, Germany, **23rd-27th** March **1992;** Borrell, P. M., Borrell, P., Cvitag, T., Seiler, W., Eds.; SPB Academic Publishing bv: Den Haag, The Netherlands, **1993;** pp **793-795.**
- (274) Granat, L.; Johansson, C. Atmos. Environ. 1983, 17, 191.
- Dovland, **H.;** Eliassen, A. Atmos. Environ. **1976, 10, 783.**
- Garland, **J.** A.; Branson, S. R. Tellus **1977,29, 445.**
- (277) Koch, C. Diploma work, University of Frankfurt/Main, Germany, **1979.**
- Erisman, J. W.; Versluis, A. H.; Verplanke, T. A. J. W.; de Haan, D.; Anink, D.; van Elzakker, B. G.; Mennen, G. M.; van Aalst, R. M. Atmos. Environ. **1993,27A, 1153.**
- (279) Golomb, D.; Batterman, S.; **Gruhl,** J.; Labys, W. Atmos. Environ. **1983,17,645.**
- Moller, D. Atmos. Environ. **1980, 14, 1067.**
- Perseke, C.; Beilke, S.; Georgii, H.-W. Die Gesamtachwefeldepovon Messdaten des Jahres 1974 (Total sulfur deposition in the Federal Republic Germany on the basis of data measured for **1974).** Berichte d. Inst. f. Met. und Geophysik, Universitat Frankfurt, **1980,** No. **40.**
- (282) von Butzke, H. Der Forst Holzwirt 1981, 21, 542.
- D'Itri, **F.** Acid Precipitation: Effects on ecological systems; *Ann* Arbor Science: Wosburn, MA, **1982.** Hallbacken, L.; Tamm, C. 0. Scand. For. Res. **1986,1, 219.** Woodin, S. **J.** J. Appl. Ecol. **1989,26, 749.**
-
-
- Butlin, R. N. Struct. Surv. **1989, 7, 316.**
- Ravera, **0.** In Encyclopedia *of* Environmental Control Technol-ogy; Cheremisinoff, P. N., Ed.; Gulf Publishing Company Book Division: Houston, **1989;** Vol. **3** (Wastewater Treatment Technology), pp **447-486.**
- Gauri, K. L. Environ. Geol. Water Sei. **1990, 15, 45.** (288)
- (289) Kuylenstierna, J. C. I.; Chadwick, M. J. Ambio 1991, 20, 118.
- (290) Roser, D. J.; Gilmour, A. J. Acid Rain in the Pacific: Its Current Extend and Repercussions for Biological Conservations in Asia and the Pacific; Report for the WWF Australia and WWF
- International, Gland, Switzerland, **1994** (in press). Spengler, J. D.; Brauer, M.; Koutrakis, P. Environ. Sci. Technol. **1990,24, 946.**
- (292) Poggendorff. Poggendorffs Ann. Phys. Chem. 1842, 55 (2. Reihe), **532.**
- Pilla, L. Compt. Rend. T **1841,** XII **(22), 997.**
- Wisniewski, J. Water Air Soil Poll. **1982, 17, 361.**
- Seager, J., Ed. Der Öko-Atlas (The Ecological Atlas); Verlag, J. (295) H. W. Dietz Nachf.: Bonn, **1991;** pp **62-63.**
- Farmer, P. *Acid* Rain and the Environment **1980-1984;** Technical Communications: Letchworth, England, **1984.**
- (297) Grayson, L. Acid Rain and the Environment **1984-1988;** Technical Communications: Letchworth, England, and British Library Science Reference and Information Service, **1988.**
- Grayson, L. *Acid* Rain and the Environment **1988-1991;** Technical Communications: Letchworth, England, and British Library Science Reference and Information Service, **1991.**
- (299) Cowling, E. B. Environ. Sci. Technol. 1982, 16, 110A
- Lipfert, F. W. In Acid Deposition; Longhurst, J. W. S., Ed.; Springer Verlag: Berlin, **1991;** pp **13-32.**
- Camuffo, D. Atmos. Environ. **1992,26B, 241.** (301)
-
- Likens, G. E. Chem. Eng. News **1976,54 (48), 29.** Galloway, J. N.; Likens, G. E.; Keene, W. C.; Miller, J. M. J. Geophys. Res. **1982, 87 (Cll), 8771.**
- (304)
- (304) Charlson, R. J.; Rodhe, H. Nature 1982, 295 (5851), 683. **(305) Delmas, R. J.; Gravenhorst, G. In Acid Deposition, Proceedings** Delmas, R. J.; Gravenhorst, G. In Acid Deposition, Proceedings of the CEC workshop organized as part **of** the concerted action "Physico-Chemical Behaviour of Atmospheric Pollutants", Berlin **9** Sept **1982;** Beilke, S., Elshout, A. J., Eds.; D. Reidel Publishing Company: Dordrecht, **1983;** pp **82-107.**
- Brickner, 0. **P.;** Rice, K. C. Annu. Rev. Earth Planet. Sci. **1993, (306) 21, 151.**
- Harrison, H.; Charlson, R. J.; Christian, G. D.; Horike, N.; Knudson, E. J.; Larson, T. V.; Riley, H.; Vanderwort, R; Weiss, R. Acid rain in Puget Sound. Precipitation scavenging **1974;** Technical Information Center, ERDA: US Department of Commerce, **1977. (307)**
- Varma, G. **S.** Atmos. Environ. **1989, 23, 747. (308)**
- **(309)** Khemani, L. T.; Momin, G. A.; Prakasa Rao, P. S.; Safai, P. D.; Singh, G.; Chattejee, R. N.; Prakash, P. Atmos. Enuiron. **1989, 23. 753.**
- **(310)** Pakngo, F.; Nagamoto, C.; Nolt, I.; Dias, M.; Nickerson, E. J. Geophys. Res. **1982,87 (Cll),** 8805.
- **(311)** Hileman, B. Enuiron. Sci. Technol. **1983, 17, 117A.**
- (312) Xue, H.; Gonçalves, M. S.; Reutlinger, M.; Sigg, L.; Stumm, W. Environ. Sci. Technol. **1991**, 25, 1716.
- **(313)** Kumar, N.; Kulshreshta, U. C.; Saxena, A,; Kumari, K. M.; Srivastava, S. S. Atmos. Enuiron. **1993,27B,** 87.
- **(314)** Gatz, D. F.; Barnard, W. R.; Stensland, G. J. WaterAir Soil Poll. **1986,30, 245.**
- **(315)** Gorham, E. Nature **1994,367 (6461), 321.**
- **(316)** Hedin, L. 0.; Granat, L.; Likens, G. E.; Buishand, T. A.; Galloway, J. N.; Butler, T. J.; Rodhe, H. Nature **1994,367 (6461),**
- **351. (317)** Liberti, A.; Allegrini, I.; Febo, A.; Possanzini, M. In Enuironmental Inorganic Chemistry; Irgolic, K. J., Martell, A. E., Eds.; VCH Verlagsgesellschafk Weinheim, Germany, **1985;** pp **419- 430.**
- (318) **Andreae, M. O.; Talbot, R. W.; Andreae**, T. W.; Harriss, R. C. J. *Geophys. Res.* **1988**, 93 (D2), 1616.
- (319) Sanhueza, E.; Elbert, W.; Rondón, A.; Corina Arias, M.; Hermoso, M. Tellus **1989,41B, 170.**
- **(320)** Lacaux, J. P.; Delmas, R.; Kouadio, G.; Cros, B.; Andreae, M. 0. J. Geoohrs. Res. **1992, 97 (D6). 6195.**
- **(321)** Ahmed, A. F. M.; Singh, R. P.; Eimubarak, A. H. Atmos. Enuiron. **1990,24A, 2927.**
- **(322)** Galloway, J. N.; Likens, G. E.; Edgerton, E. S. Science **1976, 194 (4266), 722.**
- **143. (323)** Lee, Y.-N.; Shen, J.; Klotz, P. J. Water Air Soil Poll. **1986, 30,**
-
- **(324)** Dasch, J. M. Atmos. Enuiron. **1988,22, 2255. (325)** Cogbill, C. V.; Likens, G. E. Water Resour. Res. **1974,10,1133. (326)** Guiang, S. F., 111; Krupa, S. V.; Pratt, G. C. Atmos. Enuiron.
- **(327)** Dasch, J. M. Atmos. Enuiron. **1987,21, 137. 1984,18,1677.**
- **(328)** Mulawa, P. A.; Cadle, S. H.; Lipari, F.; Ang, C. C.; Vandewennet,
- R. T. Atmos. Enuiron, **1986,20, 1389. (329)** Sakugawa, H.; Kaplan, I. R.; Shepard, L. Atmos. Enuiron. **1993, 27B, 203.**
- **(330)** Bertram, H. L.; Das, N. C.; Lau, Y. K. Water Air Soil Poll. **1986, 30, 231.**
- **(331)** Yamato, Y.; Yamada, T.; Kido, K J. Atmos. Chem. **1993,17,325.**
- **(332)** Tanaka, S.; Yamanaka, K.; Hashimoto, Y. In The Chemistry *of* Acid Rain. Sources and Atmospheric Processes; Johnson, R. W., Gordon, G. E., Callins, W., Elzerman, A. Z., Eds.; ACS Symposium Series **349;** American Chemical Society: Washington, DC, **1987;** pp **158-169.**
- **(333)** Romer, F. G.; Viljeer, J. W.; van den Beld, L.; Slangewal, H. J.; Veldkamp, A. A.; Kema, N. V.; Reijnders, H. F. R. In Acid Deposition, Proceedings of the CEC Workshop organized as part of the concerted action "Physico-Chemical Behaviour of Atmospheric Pollutants", Berlin **9,** Sept **1982;** Beilke, S., Elshout, A. J., Eds.; D. Reidel Publishing Company: Dordrecht, **1983;** pp **195-203.**
- **(334)** Seyf€er, E.; Helas, G. Poster presented on the EUROTRAC Symposium **94, 11-15** April **1994,** Garmisch-Partenkirchen, Germany.
- **(335)** Harrison, R. M.; Pio, C. A. Atmos. Enuiron. **1983,17, 2539.**
- (336) Moldan, B.; Veselý, M.; Bartonñová, A. Atmos. Environ. 1987, **21, 2383.**
- **(337)** Glavas, S. Atmos. Enuiron. **1988,22, 1505.**
- **(338)** Bobiere, M. Ad. Comptes Rend. **1864,** 58, **755.**
- **(339)** Smith, R. A. Air and Rain; Longmans, Green, and Co.: London, **1872.**
- **(340)** Cheam, V. Analyst **1992, 117, 1137.**
- **(341)** Udisti, R.; Bellandi, S.; Piccardi, G. J. Anal. Chem. **1994, 349, 289.**
- (342) Morales, J. A.; de Medina, H. L.; de Nava, M. G.; Velásquez, H.; **(343)** Keene, W. C.; Galloway, J. N. Atmos. Enuiron. *1984,18,* **2491.** Santana, M. J. Chromat. **1994,** *A671,* **193.**
-
- **(344)** Herlihy, L. J.; Galloway, J. N.; **Mills,** A. L. Atmos. Enuiron. **1987, 21, 2397.**
- **(345)** Avery, G. B., Jr.; Wiley, J. D.; Wilson, C. A. Enuiron. Sci. Technol. **1991.25. 1875.**
- **(346) Helas, G.; Andreae, M. O.; Hartmann, W. R.** *J. Atmos. Chem.* **1992**, *15*, 101.
1992, *15*, 101. *Gunde, R.; Zürcher, F.; Giger, W. Environ. Sci.*
- Technol. **lBB0,24, 722.**
- **(348)** Winniwarter, W.; Puxbaum, H.; Fuzzi, S.; Facchini, M. C.; Orsi, G.; Beltz, N.; Enderle, K.; Jaeschke, W. Tellus **1988,40B, 348.**
- **(349)** Brimblecombe, P.; Stedman, D. H. Nature **1982,298 (5873), 460. (350)** Leck, C.; Rodhe, H. Atmos. Enuiron. **1989,23, 959.**
-
- **(351)** Epstein, C. B.; Oppenheimer, M. Nature **1986,323 (6085), 245.**
- **(352)** Hedin, L. 0.; Likens, G. E.; Bormann, F. H. Nature **1987, 325 (6101), 244.**
- **(353)** Brook, J. R.; Samson, P. J.; Sillmann, S. Atmos. Enuiron. **1993, 27A, 1765.**
- **(354)** Shin, W.-C.; Carmichael, G. R. Enuiron. Sci. Technol. **1992,26, 715.**
- **(355) (356)** Galloway, J. N.; Likens, G. E. Atmos. Enuiron. **1981, 15, 1081.** Record, F. A.; Bubenick, D. V.; Kindya, R. J. Acid Rain Information Book; Noyes Data Corporation: New Jersey, **1982.**
- **(357)** Keene, W. C.; Galloway, J. N. Atmos. Enuiron. **1984, 18, 2491.**
- **(358)** Fowler, D.; Cape, J. N.; Leith, I. D.; Paterson, I. S.; Kinnaird, J. W.; Nicholson, I. A. Nature **1982,297 (5865), 383.**
- **(359)** Lumme, E.; Ruoho-Airola, T. Formation *of* acid deposition: Atmospheric chemical transformation and deposition; Report **1983, REPT-107,** Order No. N **84-16654;** Gov. Rep. Announce, Index **(US.), 84(10).** Cited afbr: Chem. Abstr. **1984, 101, 96787q.**
- Likens, G. E.; Keene, W. C.; Miller, J. M.; Galloway, J. N. *J.* Geophys. Res. **1987,92 (Dll), 13299.**
- Gillett, R. W.;Ayers, G. P.; Noller, B. N. Sci. TotalEnuiron. **1990, 92, 129.**
- Elsom, D. Atmospheric Pollution; Basil Blackwell, Ltd.: Oxford,
- **1987.** Puxbaum, H.; Rosenberg, C.; Gregori, M.; Lanzerstorfer, C.; Ober, E.; Winniwarter, W. Atmos. Enuiron. **1988,22, 2841.**
- Grosjean, D. Enuiron. Sci. Technol. **1989,23, 1506.**
- (365) Weathers, K. C.; Likens, G. E.; Bormann, F. H.; Bicknell, F. H.;
Bormann, B. T.; Daube, B. C., Jr.; Eaton, J. S.; Galloway, J. N.;
Keene, W. C.; Kimball, K. D.; McDowell, W. H.; Siccama, T. G.;
Smiley, D.; Tarrant, R. A.
- (366) Hartmann, W. R.; Andreae, M. O.; Helas, G. Atmos. Environ.
1989, 23, 1531.
- **1989.23. 1531.** Schdtz Tokos, J. J.; Tanaka, S.; Morikami, T.; Shigetani, H.; Hashimoto, Y. J. Atmos. Chem. **1992, 14, 85.** Willey, J. D.; Wilson, C. A. *J.* Atmos. Chem. **1993,** 16, **123.**
-
- Kawamura, K.; Kaplan, I. R. In *Organic Chemistry of the Atmosphere*; Hansen, L. D., Eatough, D. J., Eds.; CRC Press: Boca Raton, 1991; pp 233-284.
- **(370)** Andreae, M: *0.;* T&ot, R. W.; Li, S.-M. J. Geophys. Res. **1987, 92 (D6), 6635.** Keene, W. C.; Galloway, J. N. Tellus **1988,40B, 322.**
- **(371) (372)**
- **(373)** Kawamura, K.; Ng, L.-L.; Kaplan, I. R. *Environ. Sci. Technol.*
1985, *19*, 1082.
Sanhueza, E.; Corina Arias, M.; Donoso, L.; Graterol, N.;
Hermoso, M.; Marté, I.; Romero, J.; Rondón, A.; Santana, M.
- **(374)** Tellus **1992,44B, 54.** Willey, J. D.; Bennett, R. J.; Williams, J. M.; Denne, R. K.; Kornepay, C. R.: Perlotto, M. S.: Moore, B. M. Enuiron. Sci. Technd.-1988,22, **41.**
- Lewis, W. M.; Grant, M. C. Science **1980,207 (4427), 176.**
-
- Martin, A.; Barber, F. R. Atmos. Enuiron. **1981,** *15,* **567.** Cox, R. A.; Penkett, S. A. Formation of Atmospheric Acidity; Commission of the European Communities Report EUR **8307, 1983;** pp **56-81.**
- IUPAC Solubility Data Series; Battino, R., Ed.; Pergamon Press: Oxford, **1981;** Vol. **7** (Oxygen and Ozone).
- (379) Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed.; J.
- Wiley: New York, 1967; Vol. 14, p 412.
CRC Handbook of Chemistry and Physics, 66th ed. 1985–1986;
Weast, R. C., Astle, M. J., Beyer, W. H., Eds.; CRC Press Inc.: Boca Raton, FL, **1985.** Tabellenbuch Chemie (Book of Tables Chemistry), 9th ed.; VEB
- **(381)** Deutscher Verlag fiir Grundstoffindustrie: Leipzig, **1982.** Aylward, G. H.; Findlay, T. J. V. Datensammlung Chemie in *SI-*
- **(382)** Einheiten (Summary ofdata chemistry in *SI* units), **2;** Auflage, Verlag Chemie: Weinheim, **1981.**
- IUPAC Solubility Data Series; Young, C. L., Ed.; Pergamon Press: Oxford, **1981;** Vol. **8** (Oxides of nitrogen).
- (384) Millero, F. J.; Hershey, J. P.; Johnson, G.; Zhang, J.-Z. J. Atmos. Chem. **1989**, 8, 377.
-
- Rumpf, B.; Maurer, G. Fluid Phase Equilib. **1993,91, 113.** Jayne, J. T.; Davidovits, P.; Worsnop, D. R.; Zahniser, M. S.; Kolb, C. E. *J.* Phys. Chem. **1990, 94, 6041.** (386)
- Kraft, J. Mechanistiche Untersuchungen zur katalytischen Oxidation von Schwefel(IV)-Oxiden durch Fe(II)/Fe(III)- Komplexe in wassrigem Medium (Mechanistic study of the catalytic oxidation of **sulfur(IV)** oxides by FdIIj/Fe(III) complexes in aqueous solution). Ph.D. Thesis, University of Frankfurt/ Main, Germany, **1987.**
- (388) National Bureau of Standards. Selected Values of Chemical Thermodynamic Properties. N.B.S. Tech. Note **1965, 270-1.**
-
-
- Warneck, P. In Chemistry of Multiphase Atmospheric Systems;
Jaeschke, W., Ed.; NATO ASI Series, Serie G: Ecological
Sciences; Springer Verlag: Berlin, 1986; Vol. 6, pp 473-499.
Barbero, J. A.; Hepler, L. G.; McCurdy, K. G.
- **(393)**
-
- **(394) (395)** Betterton, E. A. *J.* Atmos. Chem. **1993,17, 307.** Roy, R. N.; Zhang, J.-Z.; Millero, F. J. *J.* Sol. Chem. **1991, 20, 361.**
- (396) van Eldik, R.; Harris, G. M. *Inorg. Chem.* 19SO,19, 880.
- (397) Kao, C. F. Thermodynamic and kinetic studies of the iron-sulfite system by electrochemical methods. Ph.D. Thesis, Columbia University, New York, 1979.
- (398) Roy, R. N.; Zhang, J.-Z.; Millero, F. J. *J. Sol. Chem.* 1991, 20, 467.
- (399) Golding, R. M. *J. Chem. Soc.* 1960,3711.
- (400) Bourne, D. W. A.; Higuchi, T.; Pitman, I. H. *J. Pharm. Sci.* 1974, 63, 865.
- (401) Littlejohn, D.; Walton, S. A.; Chang, S.-G. *Appl. Spectrosc.* 1992, 46, 848.
- (402) Horner, D. A.; Connick, R. E. *Inorg. Chem.* 1986,25, 2414. (403) Connick, R. E.; Tam, T. M.; von Deuster, E. *Inorg. Chem.* 1982, 21. 103.
-
- (404) Rhee, J.-S.; Dasgupta, P. K. *J. Phys. Chem.* 1986, 89, 1799. (405) Guthrie, J. P. *Can. J. Chem.* 1979,57, 454.
- (406) Eigen, M.; Kustin, K.; Maas, G. *2. Phys. Chem., Neue Folge* 1961, 30, 130.
- (407) Betts, R. H.; Voss, R. H. *Can. J. Chem.* 1970, 48, 2035.
- (408) Hayon, E.; Treinin, A.; Wilf, J. *J. Am. Chem. Soc.* 1972,94, 47. (409) Clarke, A. G. *Atmos. Enuiron.* 1981, 15, 1591.
-
- (410) Schaefer, K.; Niggemann, H.; Kohler, W. *2. Elektrochem.* 1916, 21, 181.
- (411) (a) Simon, A.; Waldmann, K. *2. Anorg. Allg. Chem.* 1966,281, 113. (b) Simon, A.; Waldmann, K. *2. Anorg.* Allg. *Chem.* 1956, 281, 135.
- (412) Simon, A.; Kriegsmann, H. *Chem. Ber.* 1956,89, 2442.
- (413) Baird, N. C.; Taylor, K. F. *J. Comput. Chem.* 1981,2, 225.
- (414) Stromberg, A.; Gropen, *0.;* Wahlgren, U.; Lindqvist, 0. *Inorg. Chem.* 1983,22,1129.
- (415) Feng, Q.; Waki, H. *Polyhedron* 1988, 7, 291.
- (416) Rabinowitch, E.; Stockmayer, W. H. *J. Am. Chem. SOC.* 1942, 64, 335.
- (417) Balarew, Chr.; Duhlev, R. *2. Anorg. Allg. Chem.* 1988,566,180. (418) Edwards, J. 0. *Inorganic Reaction Mechanisms;* W. A. Benjamin
- Inc.: New York, 1965.
- (419) Flynn, C. M., Jr. Chem. Rev. 1984, 84, 31.
- (420) Burgess, J. *Ions in Solution: Basic Principals of Chemical Interactions;* Ellis Horwood Limited Publishers: Chichester, 1988.
- (421) Brown, P. L.; Sylva, R. N.; Ellis, J. *J. Chem. SOC., Dalton Trans.* 1985, 723.
- (422) Chatt, J.; Halpern, J. In *Catalysis: Progress in Research;* Basolo, F., Burwell, R. L., Jr., Eds.; Plenum Press: London, 1973; pp 107-129.
- (423) Swaddle, T. W. *Inorg. Chem.* 1991, 12, 237.
- (424) Kang, S.-K.; Lam, B.; Albright, T. A.; OBrien, J. F. *New J. Chem.* 1991, 15, 757.
- (425) Nigam, P. C.; Naik, R. M.; Prasad, S. *J. Indian Chem. SOC.* 1992, 69, 475.
- (426) Gray, H. B.; Langford, C. H. *Chem. Eng. News* 1968, 46 **(151,** 68.
- (427) Basolo, F.; Johnson, R. C. *Coordination Chemistry,* 2nd ed., Science Reviews, 1986; ISBN 0-905927-47-8.
- (428) Grant, M.; Jordan, R. B. *Inorg. Chem.* 1981,20, *55.*
- (429) Swaddle, T. W.; Merbach, **A.** E. *Inorg. Chem.* 1981,20, 4212.
- (430) Akesson, R.; Pettersson, L. G. M.; Sandstrom, M.; Siegbahn, P. E. M.; Wahlgren, U. *J. Phys. Chem.* 1993, 97, 3765.
- (431) Burgess, J. *Metal Ions in Solution;* Ellis Horwood Limited Publishers: Chichester, 1978.
- (432) Mattock, G. *Acta Chem. Scand.* 1964, 8, 777. (433) Hedstrom, B. 0. A. *Ark. Kemi* 1963, 5, 457. (434) Hedstrom, B. 0. A. *Ark. Kemi* 1963, 6, 1.
-
-
- (435) Morgan, J. J. In *Principles and Applications of Water Chemistry,* Proceedings of the fourth Rudolfs Research Conference, Rutgers, The State University, New Brunswick, NJ; Faust, S. D., Hunter,
- I. V., Eds.; John Wiley & Sons: New York, 1967; pp 561-622. (436) Davies, G. *Coord. Chem. Rev.* 1969,4, 199. (437) Baes, C. F.; Mesmer, R. E. *The Hydrolysis of Cations;* John Wiley
- & Sons: New York, 1976. (438) Biedermann, G.; Palombari, R. *Acta Chem. Scand.* 1978,32A,
- 713.
-
- (439) Warrens, C. P. *Coord. Chem. Rev.* 1986, 71, 3. (440) Silver, J., Ed. *Chemistry of iron,* 1st ed.; Blackie Academic & (441) Silver, J. In *Chemistry of iron,* 1st ed.; Silver, J., Ed.; Blackie Professional: London, 1993.
- (442) Biruš, M.; Kujundžić, N.; Pribanić, M. *Prog. React. Kinet*. **1993**, Academic & Professional: London, 1993; pp 1-29.
- *18,* 171.
- (443) Bray, W. C.; Hershey, A. V. *J. Am. Chem. SOC.* 1934,56, 1889. (444) Sapieszko, R. S.; Patel, R. C.; MatijeviC, E. *J. Phys. Chem.* 1977,
- 81, 1061.
- **(445)** Kraft, J.; van Eldik, R. *Inorg. Chem.* 1989,28, 2297. (446) Behar, D.; Stein, G. *Isr. J. Chem.* 1969, 7, 827.
- (447) Martinez, P.; van Eldik, R.; Kelm, H. *Ber. Bunsen-Ges. Phys. Chem.* 1985, 89, 81.
- (448) Byme, R. H.; Kester, D. R. *Mar. Chem.* 1976,4, 275.
-
- (449) Stuglik, Z.; Zag6rski, Z. P. *Radiat. Phys. Chem.* 1981, 17, 229. (450) Khoe, G. H.; Brown, P. L.; Sylva, R. N.; Robins, R. G. *J. Chem. Soc., Dalton Trans.* 1986, 1901.
- (451) Hemmes, P.; Rich, L. D.; Cole, D. V.; Eyring, E. M. *J. Phys.* (452) Khoe, G. H.; Robins, R. G. *J. Chem. Soc., Dalton Trans.* 1988, *Chem.* 1971, 75,929.
- 2015.
- (453) Ropars, C.; Rougee, M.; Momenteau, M.; Lexa, D. *J. Chim. Phys. Phys.-Chim. Biol.* 1968, 65, 816.
- (454) Lutz, B.; Wendt, H. *Ber. Bunsen-Ges. Phys. Chem.* 1970, 74,372.
- (455) Zvyagintsev, 0. E.; Lyakhmanov, S. B. *Russ. J. Inorg. Chem.* 1968,13,643.
- (456) Milburn, R. M. *J. Am. Chem. Soc.* 1967, 79, 537.
- (457) Wendt, H. *2. Elektrochem.* 1962, 66, 235.
- (458) Khachaturyan, 0. B.; Belyakova, A. A. *Russ. J. Phys. Chem.* 1976,50,1424.
- (459) Morris, D. F. C.; Wilson, A. R. *J. Inorg. Nuclear. Chem.* 1969, 31, 1532.
- (460) Rowley, J. K.; Sutin, N. *J. Phys. Chem.* 1970, 74, 2043. (461) Hasinoff, B. B. *Can. J. Chem.* 1976, 54, 1820. (462) Byme, R. H.; Kester, D. R. *J. Sol. Chem.* 1981,10, 51.
-
-
- (463) Woods, M. J. M.; Gallagher, P. K.; King, E. L. *Inorg. Chem.* 1962, (464) Sekine, T.; Tetsuka, T. *Bull. Chem. SOC. Jpn.* 1972, 45, 1620. 1, *55.*
- (465) Conklin, M. H.; Hoffmann, M. R. *Enuiron. Sci. Technol.* 1988,
- (466) Skorik, N. A.; Zatolokina, N. **A.** *Russ. J. Inorg. Chem.* 1986,31, 22, 899. 1318.
- (467) Cavasino, F. P. *J. Phys. Chem.* 1968, 74, 1378.
-
- (468) Mattoo, B. N. *2. Phys. Chem.* 1969,19, 156. (469) Jayson, G. G.; Parsons, B. J.; Swallow, A. J. *J. Chem. Soc., Faraday Trans.* 1 1973, 69, 1079. (470) Paramonova, V. I.; Zamanskii, V. Ya.; Kolychev, V. B. *Russ. J.*
- *Inorg. Chem.* 1973,18, 1132.
- (471) Perrin, D. D. *J. Chem. Soc.* 1969, 1710.
- (472) Hancock, R. P.; Marsicano, T. *Inorg. Chem.* 1980, 19, 2709.
- (473) Sommer, L.; Pliska, K. *Coll. Czech. Chem. Commun.* 1961,26, 2754.
- (474) Chiavatta, L.; Nunziata, G.; Sillen, L. G. *Acta Chem. Scand.*
- 1969, 23, 1637.
(475) Mironov, V. E.; Mukashev, Yu. A.; Mavrina, I. Ya.; Kryzhanovskii, M. M. *Russ. J. hog. Chem.* 1970,15, 668.
- (476) Hutchinson, M. H.; Higginson, W. C. E. *J. Chem. Soc., Dalton* (477) Archer, D. W.; Monk, C. B. *J. Chem. SOC.* 1964, 3117. *Trans.* 1973, 1247.
-
- (478) Linder, P. W.; Torrington, R. G.; Seemann, U. A. *Talanta* 1983, 30, 295.
- (479) Sweeton, F. H.; Baes, C. F., Jr. *J. Chem. Thermodyn.* 1970,2, 479.
- (480) Gayer, K. H.; Wootner, L. *J. Am. Chem. Soc.* 1966, 78, 3944.
-
-
- (481) Bolzan, J. A.; Anria, A. J. *Electrochim. Acta* 1963, 8, 375. (482) Mesmer, R. E. *Inorg. Chem.* 1971, 10, 857. (483) Medina de la Rosa, E.; Mederos, A.; Martin Barroso, P.; Alavarez Colomer, J. J. *Anal. Quim.* 1979, 75, 799.
- (484) Ehrenfreund, M.; Leibenguth, J. L. *Bull. SOC. Chim. Fr.* 1970, 2498.
- (485) Wells, C. F. *J. Chem. Soc.* (A) 1969, 2741.
- (486) Izatt, R. M.; Eatough, D.; Christensen, J. J.; Bartholomew, C. H. *J. Chem. SOC.* (A) 1969, 47.
-
-
- (487) Wells, C. F.; Davies, G. *Nature* 1**965**, 205 (4972), 692.
(488) Wells, C. F.; Davies, G. *J. Chem. Soc. A* 1**967**, 1858.
(489) Fackler, J. P., Jr.; Chawla, I. D. *Inorg. Chem.* 1**964**, 3, 1130.
- (490) Diebler, H.; Sutin, N. *J. Phys. Chem.* 1964, 68, 174.
- (491) Perrin, D. D. *J. Chem. Soc.* 1962, 2197.

267.

Inorg. Chem. 1991,30,4555.

-
-
- (492) Fontana, S.; Brito, F. *Inorg. Chim. Acta* 1968,2, 179. (493) Morris, D. F. C.; Short, E. L. *J. Chem. Soc.* 1961, 5148. (494) Bixler, J. W.; Larson, T. M. *J. Inorg. Nucl. Chem.* 1974,36,224.
-
- (495) Hallada, C. J.; Atkinson, G. *J. Am. Chem. Soc.* 1961,83,3759. (496) Wheat, C. G.; Carpenter, R. *J. Sol. Chem.* 1988, 17, 467. (497) Li, N. C.; Westfall, W. M.; Lindenbaum, A.; White, J. M.;

(498) **Xu,** F. C.; Krouse, H. R.; Swaddle, T. W. *Inorg. Chem.* 1986,24, Schubert, J. *J. Am. Chem. SOC.* 1967, 79, 5864.

(499) Dodgen, H. W.; Liu, G.; Hunt, J. P. *Inorg. Chem.* 1981,20,1002. *(500)* Luz, Z.; Shulman, R. G. *J. Chem. Phys.* 1966,43, 3750.

(501) Connick, R. E.; Coppel, C. P. J. Am. Chem. Soc. 1**959**, 81, 6389.
(502) Yasunaga, T.; Harada, S. *Bull. Chem. Soc. Jpn.* 1969, 42, 2165.
(503) Carlyle, D. W. *Inorg. Chem.* 1971, 10, 761.
(504) Davis, G. G.; Smith, W

(505) Moorhead, E. G.; Sutin, N. *Inorg. Chem.* 1966,5, 1866. (506) Pandey, R. N.; Smith, W. MacF. *Can. J. Chem.* 1972,50, 194. (507) Accascina, F.; Cavasino, F. P.; Di Dio, E. *Trans. Faraday SOC.* 1969, 65, 489. (508) Gouger, S.; Stuehr, J. *Inorg. Chem.* **1974**, *13*, 379.
(509) Fábián, I.; Gordon, G. *Inorg. Chem.* **1991**, 30, 3994.
(510) Bänsch, B.; Martinez, P.; Uribe, D.; Zuluaga, J.; van Eldik, R.

(511) Brandt, Ch. Kinetic and mechanistic studies of the iron(II1) catalyzed autoxidation of $\text{suffix}(\text{IV})$ oxides. Ph.D. Thesis, Uni-

versity of Witten/Herdecke, Germany, 1994.

(512) Mulay, L. N.; Selwood, P. W. J. Am. Chem. Soc. 1955, 77, 2693.

(513) Spiro, T. G.; Allerton, S. E.; Renner, J.; Terzis, A.; Bils, R.; Saltman, P. J. Am. Chem. Soc. 1966, 8

184 Chemical Reviews, 1995, Vol. 95, **No.** 1

-
- **(514)** Ardon, M.; Bino, A. Inorg. Chem. **1985,24, 1343. (515)** Kolosov, I. V.; Intskirveli, L. N.; Varshal, G. M. Rws. J. Inorg.
- **(516)** Dasgupta, P. K.; Mitchell, P. A.; West, P. W. Atmos. Enuiron. Chem. **1975,20, 1179. 1979**, *13*, 775.
- **(517)** Feitknecht, W.; Giovanoli, R.; Michaelis, W.; Miiller, M. Helu. Chim. Acta **1973,56,2847.**
- **(518)** Knight, R. J.; Sylva, R. N. J. Inorg. Nucl. Chem. **1974,36, 591. (519)** Bottero. J.-Y.: Manceau. A.: Viellieras. F.: Tchoubar. D. Lana-
- Count. Actu**ry.** 30, 20-1.
Knight, R. J.; Sylva, R. N. J. Inorg. Nucl. Chem. **1974**, 36, 591.
Bottero, J.-Y.; Manceau, A.; Viellieras, F.; Tchoubar, D. *Lang-muir* **1994**, *10*, 316. muir 1994, 10, 316.
(520) Feitknecht, W.; Giovanoli, R.; Michaelis, W.; Müller, M. Z. Anorg.
- Allg. Chem. **1976, 417, 114.**
- (521) Krivoruchko, O. P.; Zolotovskii, B. P.; Buyanov, R. A.; Šolcová, A.; fiubrt, J. *2.* Anorg. Allg. Chem. **1983,504, 179.**
- **(522)** Zhang, Y.; Wang, Y.; Hua, T. Chin. J. Met. Sci. Technol. **1991,** *^m***.r** /. **ID.**
-
- (523) Dousma, J.; den Ottelander, D.; de Bruyn, P. L. J. Inorg. Nucl.
Chem. 1979, 41, 1565.
(524) Solcová, A.; Šubrt, J.; Hanousek, F.; Bechině, K.; Zapletal, V.; Zolotovskii, B, P.; Krivoruchko, O. P.; Buyanov, R. A.; Li
- many, April **1994. (525)** Lepentsiotis, V. Diploma work, University of Dortmund, Ger-
- SOC. **1966, 84, 926. (527)** Po, H. N.; Sutin, N. hog. Chem. **1971,** *10,* **428. (528)** Sommer, B. A.; Margerum, D. W. hog. Chem. **1970,9, 2517. (526)** Conocchioli, T. J.; Hamilton, E. J., Jr.; Sutin, N. *J.* Am. Chem.
-
-
- **(529)** Sawyer, D. T. Oxygen Chemistry; International Series of Monographs on Chemistry **26;** Oxford University Press: Oxford, New York, **1991.**
-
- **(530)** Arzoumanian, H. Bull. SOC. Chim. Belg. **1991,** *100,* **717. (531)** Sawyer, D. T. In Oxygen Complexes and Oxygen Activation by Transition Metals; Martell, A. E., Sawyer, D. T., Eds.; Plenum
Press: New York, 1988; pp 131-148.
(532) Fallab, S. Angew. Chem. **1967**, 79, 500.
-
- **(533)** Hipp, C. J.; Busch, D. H. In Coordznatzon Chemistry, *Vol.* **2;** Mahll, **A.** E., Ed.; ACS Monograph **174;** American Chemical Society: Washington, DC, **1978;** pp **221-475.**
-
-
- (534) Karlin, K. D.; Gultneh, Y. *Prog. Inorg. Chem.* **1987**, 219.
(535) Drago, R. S.; Beer, R. H. *Inorg. Chim. Acta* **1992**, *198–200*, 359.
(536) Drago, R. S.; Cannady, J. P.; Leslie, K. A. J. Am. Chem. Soc.
1980, *10*
- **(537)** Hamilton, D. E.; Drago, R. S.; Telser, J. J. Am. Chem. SOC. **1984,** *106,* **5353.**
-
- **(538)** Mimoun, H. J. Mol. Catal. **1980, 7,** 1. **(539)** Sawyer, D. T.; Valentine, J. S. Acc. Chem. Res. **1981, 14, 393. (540)** Gerrard, W. Gas Solubilities; Pergamon Press: Oxford, New
- York, **1980.**
- **(541)** Fogg, P. G. T.; Gerrard, W. Solubility of Gases in Liquids; John Wiley & Sons: Chichester, **1991.**
- **(542)** Kester, D. R. In Chemical Oceanography, 2nd ed.; Riley, J. P., Skirrow, G., Eds.; Academic Press: London, **1975;** Vol. **1,** pp **497-556.**
- (543) Umbreit, W. W.; Burris, R. H.; Stauffer, J. S. Manometric Techniques and Tissue Metabolism; Burgess Publishing Co.: Minneapolis, **1949.**
-
- **(544)** Yasunishi, A. J. Chem. Eng. Jpn. **1977,10, 89. (545)** Messer Griesheim GmbH, Ed. Gase Handbuch (Handbook *of* gases), 3rd ed.; Messer Griesheim GmbH: Dusseldorf, Germany, **1986.**
- (546) Gestrich, W.; Pontow, B*. Chem.-Ing.-Tech.* **1977**, 49, 564.
(547) Linek, V.; Vacek, V. *Chem. Eng. Sci.* **1981**, 36, 1747.
(548) Battino, R.; Clever, H. L*. Chem. Rev.* **1966**, 66, 395.
(549) Groisman, A. Sh.; Khomu
-
-
- **707. (550)** Schumpe, A.; Adler, I.; Deckwer, W.-D. Biotechnol. Bioeng. **1978,**
- **20, 145. (551)** Rothmund, V. Wslichkeit und *Liislichkeitsbeeinflussung* (Solu-
- bility and solubility influences); Barth-Verlag: Leipzig, Germany, **1907.**
- **(552)** Debye, P.; McAulay, J. Phys. *2.* **1926,26, 22. (553)** Kortum, G. *2.* Elektrochem. **1936,42, 287.**
-
-
- **(554)** Setschenow, J. *2.* Phys. Chem. **1889, 4, 117. (555)** Setchhow, M. Ann. Chim. Phys. **1892,25, 226.**
- **(556)** van Krevelen, D. W.; Hoftijzer, P. J. Chemie et Industrie: Numero Speciale du XXIe Congr6s International de Chemie Industrielle, Bruxelles **1948.**
- **(557)** Danckwerts, P. **V.** Gas Liquid Reactions; McGraw Hill: New York, **1970.**
-
- (558) Onda, K.; Sada, E.; Kobayashi, T.; Kito, S.; Ito, K. J. Chem. Eng.

Jpn. 1970, 3, 18.

(559) Wilkinson, P. M.; Doldersum, B.; Cramers, P. H.; van Dierendonck, L. L. Chem. Eng. Sci. 1993, 48, 933.

(560) Perrin, D. D
-
-
- **14, 463.**
- **(563)** Cocks, **A.** T.; McElroy, W. J. The role *of* transition metal ions in atmospheric droplet chemistry; Report No. TPRD/L/3001/R86;

Central Electricity Research Laboratories: Leatherland, En gland, **1986;** pp **345-355.**

-
- (564) Warneck, P. Fresenius J. Anal. Chem. 1991, 340, 585.
(565) Warneck, P. Fresenius J. Anal. Chem. 1991, 340, 585.
(565) Warneck, P. In Laboratory Studies of the Aqueous Chemistry of Free Radicals, Transition Metals and Contract No. STEP-00054 **(MB);** April 1,1990-March **31,1992;**
-
- May **1992;** pp **75-87. (566)** Vong, R. **J.** Atmos. Enuiron. **1990,21, 1353. (567)** Vong, R. J.; Sigmon, J. T.; Mueller, S. F. Enuiron. Sci. Technol.
- **1991**, 25, 1014.
 **(568) Calvert, J. G., Ed. Acid Precipitation Series; Teasley, J. I., Series

Ed.; Butterworth Publishers: Boston, 1984; Vol. 3 (SO₂, NO, and** NO2 Oxidation Mechanisms: Atmospheric Considerations).
- **(569)** Saxena, P.; Seigneur, C. Atmos. Enuiron. **1987,21, 807. (570)** Penkett, S. A.; Jones, B. M. R.; Brice, K. A.; Eggleton, A. E. J.
- Atmos. Enuiron. **1979, 13, 123. (571)** Fung, C. S.; Misra, P. K.; Bloxam, R.; Wong, S. Atmos. Environ.
-
-
-
- **1991**, 25A, 411.
(572) Chameides, W. L. J. Geophys. Res. **1984**, 89 (D3), 4739.
(573) Seigneur, C.; Saxena, P. Atmos. Environ. **1984**, 18, 2109.
(574) Hegg, D. A.; Hobbs, P. V. Atmos. Environ. **1978**, 12, 241.
(575) Graed
- *31* **7 (6034), 240. (576)** Brock, J. R.; Durham, J. L. In Acid Precipitation Series; Teasley, J. I., Series Ed.; Butterworth Publishers: Boston, **1984;** Vol. **3**
- (SO₂, NO, and NO₂ Oxidation Mechanisms: Atmospheric Considerations; Calvert, J. G., Ed.) pp 209–247.
(577) Becker, K. H. In Atmosphärische Spurenstoffe und ihr physikalisch-chemisches Verhalten (Atmospheric trace subs their physical chemical behavior); Becker, K. H., Lobel, J., Eds.; Springer Verlag: Berlin, **1985;** pp **11-27.**
- **(578)** Martin, L. R. In Acid Precipitation Series; Teasley, J. I., Series Ed.: Butterworth Publishers: Boston. **1984:** Vol. **3 (SOS.** NO. and NO; Oxidation Mechanisms: Atmospheric Consideraiions;'Calvert, J. G., Ed.) pp **63-100.**
- **(579)** Calvert, J. G.; Stockwell, W. R. Enuiron. Sci. Technol. **1983,17, 428A.**
- **315. (580)** Atkinson, R.; Lloyd, A. C. J. Phys. Chem. Ref. Data **1984, 13,**
- **(581)** McElroy, W. J. Atmos. Enuiron. **1986,20, 323.**
-
- (582) **Huie, R. E.; Neta, P. Atmos. Environ. 1987**, 21, 1743.

(583) Wine, P. H.; Tang, Y.; Thorn, R. P.; Wells, J. R. J. Geophys. Res.
 1989, 94 (D1), 1085.
-
-
- (584) Clarke, A. G.; Radojevic, M. *Atmos. Environ.* **1983**, *17*, 617.
(585) Scott, W. D.; Hobbs, P. V. J. *Atmos. Sci.* **1967**, *24*, 54.
(586) Miller, J. M.; de Pena, R. G. J. *Geophys. Res.* **1972**, 77, 5905.
- **(587)** Winkelmann, D. *2.* Elektrochem. **1965,59, 891.**
-
- **(588)** Fuller, E. C.; Crist, R. H. J. Am. Chem. SOC. **1941, 63, 1644. (589)** Sadat-Shafai, T.; Pucheault, J.; Ferradini, C. Radiat. Phys. Chem. **1981,17, 283.**
- **(590)** Lagrange, J.; Lagrange, P.; Pallares, C.; Wenger, G. In Laboratory Studies of the Aqueous Chemistry *of* Free Radicals, Transi-tion Metals and Formation *of* Acidity in Clouds; Wameck, P., Contract Coordinator; Final Report of Contract No. STEP-0005-C (MB), April 1,1990-March **31,1992;** May **1992;** pp **11-25.**
- **(591)** Larson, T. V.; Horike, N. R.; Harrison, H. Atmos. Enuiron. **1978, 12, 1597.**
- **(592)** Hoign6, J.; Bader, H.; Haag, W. R.; Staehelin, J. Water Res. **1986,** 19, **993.**
-
- (593) Botha, C. F.; Hahn, J.; Pienaar, J. J.; van Eldik, R. Atmos.
Environ. 1994, 28, 3207.
(594) McArdle, J. V.; Hoffmann, M. R. J. Phys. Chem. 1983, 87, 5425.
(595) Kunen, S. M.; Lazrus, A. L.; Kok, G. L.; Heikes, B. G.
- **(596)** Tan, L. **C.;** House, D. A. New Zealand J. Sci. **1974, 17, 319.** Res. **1983,** 88 **(C6), 3671.**
-
- (597) Bhargava, P.; Gupta, K. S. *Indian J. Chem.* **1993**, 32A, 201.
(598) Purmal, A. P.; Sudachenko, E. A.; Travin, S. O. *Khim. Fiz.* 1992,
11, 1265. Cited after: *Chem. Abstr.* **1993**, 118, 110548x.
- **(599)** Chawla, **0.** P. **An** electron spin resonance study of the mechanism and kinetics of photochemical reactions in aqueous solutions. Ph.D. Thesis, Camegie Mellon University, Pittsburgh, PA, **1973.** Cited after: **Ross, A.** B.; Neta, **P.** Rate Constants *for* Reactions of Inorganic Radicals in Aqueous Solution; Rep.

NSRDS-NBS 65; U.S. Department of Commerce, National

Bureau of Standards: Washington, DC, 1979.

(600) Burton, G. V.; Salmon, G. A.; Wood, N. D. In Final report:
-
- Kinetics and Mechanisms of acid generation in clouds and
precipitation; contract No. EV4V-0080-C(AM); McElroy, W. J.,
Waygood, S. J., Buxton, G. V., Salmon, G. A., Wood, N. D.,
Benkelberg, H. J., Warneck, P.; April 1991, p **305.**
-
- **(602)** Neta, P.; Huie, R. E. J. Phys. Chem. **1986,90, 4644. (603)** Deister, **U.;** McElroy, W. J.; Wameck, P. In Transport and Transformation of Pollutants in the Troposphere, Proceedings

of the EUROTRAC Symposium **'90,** Garmisch-Partenkirchen; Borrell, P., Borrell, P. M., Seiler, W., Eds.; SPB Academic Publishing bv: The Hague, The Netherlands, **1991;** pp **315- 316.**

- Izumi, **IC;** Mizuochi, M.; Yoshioka, M.; Murano, K.; Fukuyama,
- T. Environ. Sci. Technol. **1984,** *18,* **116.** Buxton, G. **V.;** Croft, S.; McGowan, *S.* In Laboratory Studies of the Aqueous Chemistry of Free Radicals, Transition Metals and
Formation of Acidity in Clouds; Warneck, P., Contract Coordina-
tor; Final Report of Contract No. STEP-0005-C (MB); April 1, 1990-March **31,1992;** May **1992;** pp **61-74.** Hasegawa, *K;* Neta, P. *J.* Phys. Chem. **1978, 82, 854.**
-
- Herrmann, H.; Exner, M.; Jacobi, H.-W.; Zellner, R. Influence of ionic strength on reactions in the tropospheric aqueous phase. Poster presented on the EUROTRAC Symposium **94, 11-15** April **1994,** Garmisch-Partenkirchen, Germany.
- (608) Lagrange, J.; Pallares, C.; Wenger, G.; Lagrange, P. In *EU-*
ROTRAC A*nnual Report 1992, part 6: GCE HALIPP*; Interna-
tional Scientific Secreteriat: Fraunhofer Institut, Garmisch-
- Partenkirchen, Germany, July **1993;** pp **38-42.** Clifton, C. L.; Altstein, N.; Huie, R. E. Environ. Sci. Technol. (609) **1988,22, 586.**
-
- Huie, R. E.; Neta, P. J. Phys. Chem. **1986, 90, 1193.** Exner, M.; Herrmann, H.; Zellner, R. Ber. Bunsen-Ges. Phys. Chem. **1992,96,470.**
- (612) Götz, U.; Elias, H.; Wannowius, K. J. Kinetic study on peroxonitric acid, HNO₄, as oxidant for sulfur(IV) in the aqueous phase. Poster presented on the Inorganic Reaction Mechanism Meeting
- **93,** Wiesbaden, Germany, Dec **13-15, 1993.** Huss, A., Jr.; Lim, P. K.; Eckert, C. A. *J.* Am. Chem. **1978,100,**
-
- 6252.
Clarke, A. G.; Radojevic, M. *Atmos. Environ*. **1987**, 21, 1115.
Trushanov, V. N.; Tsirlin, A. M.; Nikitenko, A. M.; Khodov, G.
Y. *J. Appl. Chem. USSR* **1975**, 48, 300.
Brimblecombe, P.; Spedding, D. J.*Atmos. Envir*
-
- Titoff, A. *2.* Phys. Chem. **1903,45, 641.**
- Linek, **V.;** Mayrhoferova, J. Chem. Eng. Sci. **1970,25, 787.** Nurmi, D. B.; Overman, J. W.; Erwin, J.; Hudson, J. L. In Flue
- Gas Desulfurization: Hudson. J. L.. Rochelle. G. T.. Eds.: ACS Symposium Series 188; American Chemical Society: Washington, DC, **1982;** pp **173-189.**
- (620) Wagner, C. Ber. Deutsch. Chem. *Ges.* **1929,** *62B,* **2873.**
- Skrabal, A.; Skrabal, R. Sitzungsber. Akad. Wissensch. Wien, Math. Naturwissensch. *Kl.* Abt. *II* B **1936.145. 617.**
- Blackadder, D. A.; Hinshelwood, C. *J. Chem. Soc.* **1958**, 2720. *Sø*rensen, P. E.; Andersen, V. S. *Acta Chem. Scand.* **1970**, 24,
- **1301.** (624)
- Boyce, *S.* D.; Hoffmann, M. R. *J.* Phys. Chem. **1984,** 88, **4740.** Deister, **U.;** Neeb, R.; Helas, G.; Warneck, P. J. Phys. Chem. (625) **1986,90, 3213.**
- Dong, **S.;** Dasgupta, P. K. Atmos. Environ. **l986,20, 1635.** (626)
- (627) Kok, G. **L.;** Gitlin, S. N.; Lazrus, A. L. J. Geophys. Res. **1986,91 (D2), 2801.**
- Olson, T. M.; Hoffmann, M. R. Atmos. Environ. **1986,20, 2277.** (628) Martin, **L.** R.; Easton, M. P.; Foster, J. W.; Hill, M. W. Atmos.
- Environ. **1989,23, 563.** Facchini, M. C.; Fuzzi, S.; Lind, J. A.; **Fierlinger-Oberlinninger,** H.; Kalina, M.; Puxbaum, H.; Winniwarter, W.; Arends, B. G.; (630) Wobrock, W.; Jaeschke, W.; Berner, A.; Kruisz, C. Tellus **1992,**
-
- *44B,* **533.** Klippel, W.; Warneck, P. Atmos. Environ. **1980, 14, 809.** Richards, L. W.; Anderson, J. A.; Blumenthal, D. L.; McDonald, J. A.; Kok, G. L.; Lazrus, A. L. Atmos. Environ. **1983,17, 911.** Munger, J. W.; Jacob, D. J.; HofTmann, M. R. J. Atmos. Chem.
- **1984,1,335.** Munger, J. W.; Tiller, C.; Hoffmann, M. R. Science **1986, 231** (634)
- **(4735), 247.** Ang, C. C.; Lipari, F.; Swarin, S. J. Environ. Sci. Technol. **1987,**
- **21, 102.** Tsitouridou, R.; Puxbaum, H. Int. *J.* Environ. Anal. Chem. **1987,** (636) **31,** 11.
- Sanhueza, E.; Ferrer, Z.; Romero, J.; Santana, M. Ambio **1991, 20, 115.**
- Deister, **U.;** Warneck, P.; Wurzinger, C. Ber. Bunsen-Ges. Phys. Chem. **1990,94,594.** Chapman, E. G. *J.* Geophys. Res. Lett. **1986, 13, 1411.**
-
-
- Bigelow, S. L. *Z. Phys. Chem. 1898, 28, 493.*
Rand, M. C.; Gale, S. B. In *Principles and Applications of Water*
Chemistry, Proceedings of the Fourth Rudolfs Research Conference, Rutgers, The State University, New Brunswick, NJ; Faust, S. D., Hunter, J. H., Eds.; J. Wiley & Sons, Inc.: New York, **1967;** pp **380-404. (642)** Gladkii, A. **V.** J. Appl. Chem. USSR **1984, 57, 1964.**
-
- (643) Prasad, D. S. N.; Rani, A.; Madnawat. P. V. S.; Bhargava, R.; Gupta, K. S. *J. Mol. Catal.* **1991**, 69, 393. **(644)** Neta, **P.;** Huie, R. E.; Harriman, A. *J.* Phys. Chem. **1987, 91,**
- **1606.**
- **2847. (645)** Stanbury, D. **M.;** Lednicky, L. A. J. Am. Chem. SOC. **1984,106,**
- **(646)** Huie, R. E.; Neta, P. J. Phys. Chem. **1984,** 88, **5665.**
- **(647)** Sarala, R.; Ashraful Islam, M.; Rabin, S. B.; Stanbury, D. M. Inorg. Chem. **1990,29, 1133.**
- **(648)** Merenyi, G.; Lind, J.; Shen, **X.** *J.* Phys. Chem. **1988, 92, 134. (649)** Anast, J. M.; Margerum, D. W. Inorg. Chem. **1981,20,2319.**
-
- **(650)** Stanbury, D. M. In Advances in Inorganic Chemistry; Sykes, A. G., Ed.; Academic Press, Inc.: San Diego, **1989;** Vol. **33,** pp **69- 138.**
- **(651)** Eberson, L. Adv. Phys. *Org.* Chem. **1982,** *18,* **79.**
- **(652)** Fiirholz, **U.;** Haim, A. Inorg. Chem. **1987,26,3243.**
- **(653)** CRC Handbook of Chemistry and Physics, **73rd** ed.; **1992-1993;** Lide, R. W., Ed.; CRC Press Inc.: Boca Raton, FL, **1992. (654)** Balej, J. Electrochim. Acta **1984,29, 1239.**
-
- **(655)** Spiro, M. Electrochim. Acta **1979,24, 313. (656)** Steele, W. **V.;** Appelman, E. H. *J.* Chem. Thermodyn. **1982,14,**
- **(657)** Price, J. **S.;** Tasker, I. R.; Appelman, E. H.; O'Hare, P. A. G. *J.* **337.** Chem. Thermodyn. **1986,18, 923.**
- **(658)** Mayhew, S. G. Eur. *J.* Biochem. **1978,85, 535.**
- **(659)** de Cugnac-Pailliotet, A.; Gadet, M.-C.; Pouradier, J. *C.R.* Seances Acad. Sci., *Ser. C* **l973,276C, 1331.**
- (660) Grgić, I.; Poje, M.; Novič, M.; Bizjak, M.; Hudnik, V. Catalytic effects of atmospheric *aerosol* particles in aqueous solution: Iron(II,III) catalysed oxidation of *S(W).* Poster presented on the EUROTRAC Symposium **94, 11-15** April **1994,** Garmisch-Partenkirchen, Gemany.
- (661) Chang, S.-G.; Littlejohn, D.; Hu, K.-Y. Science 1987, 237 (4816). *?r;R* **I** *Y".*
- **(662)** Littlejohn, D.; Hu, K.-Y.; Chang, S.-G. Ind. Eng. Chem. Res. **1988,27, 1344.**
- **(663)** Goodeve, C. F.; Castman, A. S.; Dooley, A. Trans. Faraday Sac. **1937,30, 1127.**
- **(664)** Castleman, **A.** W., Jr.; Davis, R. E.; Munkelwitz, H. R.; Tang, I. N.: Wood. W. P. Int. *J.* Chem. Kinet. **(SV~D.** No. **1) 1975, 629.**
- (665) **Hofmann, M.; von Ragué Schleyer, P. J. Am. Chem. Soc. 1994**, **116,4947.**
-
- **(666)** Weiss, J. Trans. Faraday **Sac. 1935, 31, 668. (667)** Hoigne, J.; Bader, H. Science **1975, 190 (42161, 782.** (668) Chelkowska, K.; Grasso, D.; Fábian, I.; Gordon, G. Ozone Sci.
- Eng. **1992,14, 33.**
-
-
- (669) Staehelin, J.; Hoigné, J. *Environ. Sci. Technol.* **1982**, *16*, 676.
(670) Haruta, K.; Takeyama, T. *J. Phys. Chem.* **1981**, 85, 2383.
(671) Chameides, W. L.; Davis, D. D. J. Geophys. Res. **1982**, 87 (C7), **4863.**
- **(672)** Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E. J. J. Phys.
- Chem. **1984,88,4144. (673)** Staehelin, J.; Biihler, R. E.; Hoigne, J. *J.* Phys. Chem. **1984,88,**
- **5999. (674)** Farhataziz; Ross, A. B. Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution. *III.* Hydroxyl Radical and Perhydroxyl Radical and their Radical Ions; Rep. NSRDS-NBS **59; U.S.** Department of Commerce National Bu- reau of Standards: Washington, DC, **1977.**
- **(675)** Sehested, **K.;** Rasmussen, 0. L.; Fricke, H. *J.* Phys. Chem. **1968, 72, 626.**
- **(676)** Bielsky, B. H. J. Photochem. Photobiol. **1978,28, 645.**
- **(677)** Hoffmann, M. R. Atmos. Environ. **1986,20, 1145.**
- **(678)** Erikson, R. E.; Yates, L. M.; Clark, R. L.; McEwen, D. Atmos. Environ. **1977.** *11.* **813.**
- **(679)** Harrison, H.; Larson, T. V.; Monkman, C. S. Atmos. Environ. **1982,16, 1039.**
- **(680)** Gunz, D. W.; Hoffmann, M. R. Atmos. Environ. **1990,24A, 1601.**
- **(681) Sakugawa, H.: Kaplan, I. R.; Tsai, W.: Cohen, Y. Environ. Sci.** *Technol.* **1990**, 24, 1452.
- (682) Shtamm, E. V.; Purmal, A. P.; Skurlatov, Yu. I. Russ. Chem.
 Rev. 1991, 60, 1228.
- **(683)** Zuo, Y.; Hoign6, J. Environ. Sci. Technol. **1992, 26, 1014.**
-
- **(684) Zuo,** Y.; Hoigne, J. Science **1993,260 (5104), 71. (685)** Faust, B. C.; Allen, J. M. Environ. Sci. Technol. **1993,27, 1221. (686)** Faust, B. C.; Anastasio, C.; Allen, J. M.; Arakaki, T. Science **1993,260 (5104), 73.**
-
- **(687)** Faust, B. C. Environ. Sci. Technol. **l994,28,217A. (688)** Adams, G. E.; Boag, J. W.; Mitchell, B. D. Proc. R. Sac. London, *Ser.* A **1966,289, 321.**
- **(689)** Behar, D.; Czapski, G. *Isr. J.* Chem. **1968,** 6, **43.**
- **(690)** Martin, L. R.; Damschen, D. E. Atmos. Environ. **1981,15,1615.**
- **(691)** Drexler, C.; Elias, H.; Fecher, B.; Wannowius, K. J. Fresenius J. Anal. Chem. **1991,340, 605.**
- **(692)** Drexler, C.; Elias, H.; Fecher, B.; Wannowius, K. J. *Ber.* Bunsen- **Ges.** Phys. Chem. **1992, 96, 481.**
- **(693)** Breytenbach, L.; van Pareen, W.; Pienaar, J. J.; van Eldik, R.
- Atmos. Environ. **1994**, 28, 2451.

(694) **Halperin, J.; Taube, H. J. Am. Chem. Soc. 1952**, 74, 380.
- (694) Halperin, J.; Taube, H. *J. Am. Chem. Soc.* **1952**, *74*, 380.
(695) Hoffmann, M. R.; Edwards, J. O. J. *Phys. Chem.* **1975**, *79,* 2096.
(696) Hoffmann, M. R. In Aquatic Chemical Kinetics; Stumm, W., Ed.;
- **(696)** HofTmann, M. R. In Aquatic Chemical Kinetics; Stumm, W., Ed.; John Wiley & Sons: New York, **1990;** pp **71-111. (697)** Ibusuki, T.; Ohsawa, M.; Takeuchi, K. Atmos. Environ. **1990,**
- **24A, 1325.**
- **(698)** Lagrange, J.; Pallares, C.; Wenger, G.; Lagrange, P. Atmos. Environ. **1993,27A, 129.**
- **(699)** Baxendale, J. H. Adv. Catal. **1952, 4, 31.**

186 Chemical Reviews, 1995, Vol. 95, No. 1

- **(700)** Cahill, A. E.; Taube, H. *J.* Am. Chem. SOC. **1952, 74, 2312.**
-
- (701) Walling, C. Acc. Chem. Res. 1975, 8, 125.

(702) Drexler, C.; Elias, H.; Wannowius, K. J. Unpublished results, 1991. Cited after: Drexler, C.; Elias, H.; Fecher, B.; Wannowius, K. J. Fresenius J. Anal. Chem. 1991, 3
- **(703)** Hoss, H.; Elias, H.; Wannowius, **IC** J. Atmos. Environ. **1991,25A, 1715.**
- (704) Stuhl, F. In Atmosphärische Spurenstoffe und ihr physikalischchemisches Verhalten (Atmospheric trace substances and their
physical chemical behavior); Becker, K. H., Löbel, J., Eds.;
-
-
- Springer Verlag Berlin: Heidelberg, 1985; pp 46–58.
(705) Jacob, D. J. J. Geophys. Res. 1**986**, 91 (D9), 9807.
(706) Faust, B. C.; Hoigné, J. *Atmos. Environ*. 1990, 24A, 79.
(707) Gershenzon, Yu. M.; Zvenigorodskii, S. G. Russ. Chem. Rev. **1990,59, 928.**
- **(708)** Saunders, S. M.; Baulch, D. L.; Cooke, K. M.; Pilling, M. J.; Smurthwaite, P. I. Int. *J.* Chem. Kinet. **1994,26, 113.**
- **(709)** Atkinson, R.; Aschmann, S. M. Environ. Sci. Technol. **1993,27, 1357.**
- **(710)** Dogliotti, L.; Hayon, E. *J.* Phys. Chem. **1968, 72, 1800.**
- **(711)** Margitan, J. J. *J.* Phys. Chem. **1984,88, 3314.**
- **(712)** Calvert, J. G.; Stockwell, W. R. In Acid Precipitation Series; Teasley, J. I., Series Ed.; Butterworth Publishers: Boston, 1984;
Vol. 3 (SO₂, NO, and NO₂ Oxidation Mechanisms: Atmospheric
Considerations; Calvert, J. G., Ed.), pp 1–62.
(713) Zellner, R.; Herrmann, H. In Advances in
- R. J. H., Hester, R. E., Eds.; J. Wiley & Sons: New York, in press; Vol. **24** (Spectroscopy in Environmental Science).
- **(714)** Kameoka, Y.; Pigford, R. L. Ind. Eng. Chem. Fundam. **1977,16, 163.**
- **(715)** Rosenberg, H. S.; Grotta, H. M. Environ. Sci. Technol. **1980,14, 470.**
- **(716)** (a) Prinsloo, F.; van Eldik, R. Oxidation *of SO2* in the presence *of* manganese and nitrogen-sulfur compounds; Report to the VEBA, **1993.** (b) Prinsloo, F. F.; Pienaar, J. J.; van Eldik, R.; Gutberlet, H. *J.* Chem. SOC., Dalton Trans. **1994, 2373.**
- **(717)** Fremy, E. Ann. Chem. Pharm. **1846,56, 315. (718)** Claus, Ad.; Koch, S. Ann. Chem. Pharm. **1869,152, 336.**
- **(719)** Claus, Ad. Ann. Chem. Pharm. **1871,158,52.**
-
- **(720)** Raschig, F. Ann. Chem. Pharm. **1887,241, 161. (721)** Wagner, M. 2. Phys. Chem. **1896,19, 668.**
- **(722)** Chang, S.-G.; Littlejohn, D.; Lin, N. H. In Flue Gas Desulfirization; Hudson, J. L., Rochelle, G. T., Eds.; ACS Symposium Series **188;** American Chemical Society: Washington, DC, **1982; pp 127-152.**
- **(723)** Pasiuk-Bronikowska, W.; Rudzinski, K. J. Chem. Eng. Commun. **1982, 18, 287.**
- **(724)** Littlejohn, D.; Chang, S.-G. Energy Fuels **1991, 5, 249.**
-
- **(725)** Nunes, T. L.; Powell, R. E. Inorg. Chem. **1970,9, 1916. (726)** Martin, L. R.; Damschen, D. E.; Judeikis, H. S. Atmos. Enuiron. **1981, 15, 191.**
- **3131. (727)** Littlejohn, D.; Hu, K.-Y.; Chang, S.-G. Inorg. Chem. **1986,25,**
- (728) Zang, V.; van Eldik, R. *J. Chem. Soc., Dalton Trans.* **1993**, 111.
-
- **(729)** Seel, F.; Degener, E. *2.* Anorg. Allg. Chem. **1956,284, 101. (730)** Seel, F.; Knorre, H. 2. Anorg. Allg. Chem. **1961, 313, 70.**
- **(731)** Oblath, S. B.; Markowitz, S. S.; Novakov, T.; Chang, S.-G. *J.* Phys. Chem. **1981, 85, 1017.**
- **(732)** Oblath, S. B.; Markowitz, S. S.; Novakov, T.; Chang, S.-G. *J.* Phys. Chem. **1982,86,4853.**
- **(733)** Geissler, M. Mechanistic study of the interaction of sulfur and nitrogen oxides in aqueous solution. Application of a newly developed ion pair chromatographic procedure and kinetic techniques. Ph.D. Thesis, University of Witten-Herdecke, Germany, **1992. (734)** Nash, **T.** Atmos. Environ. **1979, 13, 1149.**
-
-
- **(735)** Lee, Y.-N.; Schwartz, S. E. *J.* Phys. Chem. **1981,85, 840. (736)** Littlejohn, D.; Wang, Y.; Chang, S.-G. Enuiron. Sci. Technol. **1993,27, 2162.**
- **(737)** Stoperka, K.; Wolf, F.; Suss, G. 2.Anorg.Allg. Chem. **1968,359, 14.**
-
- (738) Ellison, T. K.; Eckert, C. A. *J. Phys. Chem. 1984, 88, 2335.*
(739) Luňák, S.; El-Wakil, A. M.; Vepřek-Šiška, J. *Collect. Czech.* Chem. Commun. **1978,43, 3306.**
- **(740)** Conklin, M. H.; Hoffmann, M. R. Environ. Sci. Technol. **1988, 22, 891.**
- **(741)** Jacob, D. J.; Gottlieb, E. W.; Prather, M. J. *J.* Geophys. Res. **1989, 94 (DlOi. 12975.**
- **(742)** 94 (D10), 12975.
Linn, D. E., Jr.; Rumage, S. D.; Grutsch, J. L., Jr. *Int. J. Chem.*
Kinet. **1993**, 25, 489.
Backström, H. J. Z. Phys. Chem. **1934**, 25B, 122.
Karraker, D. G. J. Phys. Chem. **1963**, 67, 871.
Earraker, D.
- **(743) (744) (745)**
-
-
- **(746)** Linn, D. E., Jr.; Dragan, M. J.; Miller, D. E. Inorg. Chem. **1990, 29, 4356.**
- **(747)** Coichev, N.; van Eldik, R. Inorg. Chim. Acta **1991, 185, 69.**
- **(748)** Coichev, N.; van Eldik, R. Inorg. Chem. **1991, 30, 2375.**
- (749) Berglund, J.; Elding, L. I. In Laboratory Studies of the Aqueous Chemistry *of* Free Radicals, Transition Metals, and Formation *of* Acidity in Clouds; Warneck, P., Contract Coordinator; Final

Report of Contract No. STEP-0005-C (MB); April 1,1990-March

- **31, 1992;** May **1992;** pp **27-44. (750)** Berglund, J.; Fronaeus, S.; Elding, L. I. Inorg. Chem. **1993,32, 4527.**
- **(751)** Brandt, Ch.; van Eldik, R. In Photo-ozidants: Precursors and Products, Proceedings of the EUROTRAC Symposium **92,** Garmisch-Partenkirchen, Germany, **23rd-27th** March **1992;** Borrell, P. M., Borrell, P., Cvitag, T., Seiler, W., Eds.; SPB Academic Publishing bv: Den Haag, The Netherlands, **1993;** pp **593-597.**
- **(752)** Brandt, Ch.; Fabian, I.; van Eldik, R. Inorg. Chem. **1994, 33, 687.**
- (753) Mukhopadhyay, S.; Banerjee, R. J. Chem. Soc., Dalton Trans. **1993, 933.**
- **(754)** Ziajka, J.; Beer, F.; Warneck, P. Atmos. Environ. **1994,28,2549. (755)** Huss, A., Jr.; Lim, P. K.; Eckert, C. A. *J.* Phys. Chem. **1982,86, 4229.**
- **(756)** Martin, L. R.; Hill, M. W.; Tai, A. F.; Good, T. W. *J.* Geophys.
- Res. **1991, 96 (D2), 3085. (757)** Langford, C. H.; Carey, J. H. Can. *J.* Chem. **1976,53, 2430. (758)** Deister, **U.;** Warneck, P. *J.* Phys. Chem. **1990,94, 2191.**
-
- **(759)** Lim. P. K.: Huss. A.. Jr.: Eckert. C. A. *J.* Phvs. Chem. **1982.86.** ,,, ,, **4233.** '
- **(760)** Hobson, D. B.; Richardson, P. J.; Robinson, P. J.; Hewitt, E. A,;
- Smith, I. *J. Chem. Soc., Faraday Trans.* **1986**, 82, 869. *(761)* Hoffmann, M. R.; Jacob, D. J. In Acid Precipitation Series; Teasley, J. I., Series Ed.; Butterworth Publishers: Boston, 1984;
Vol. 3 (SO₂, NO, and NO₂ Oxidation Mechanisms: Atmospheric
Considerations; Calvert, J. G., Ed.), pp 101-172.
(762) Johansson, L.-G.; Ljungström, E. Act
- **1184.**
- **(763)** Larsson, L. *0.;* Niinistii, L. Acta Chem. Scand. **1973, 27, 859. (764)** Magnusson, A.; Johansson, L.-G.; Lindqvist, 0. Acta Crystallogr.
- **1981, B37, 1108.**
- **(765)** Ernst, T.; Cyfert, M.; Wilgocki, M. Int. *J.* Chem. Kinet. **1992, 24. 903.**
- **(766)** Chen, H. H.; Tsao, M.-S.; Gaver, R. W.; Tewari, P. H.; Wilmarth, **W. K.** *Inorg. Chem.* **1966,** 5, 1913.
(767) Elder, R. C.; Heeg, M. J.; Payne, M. D.; Trkula, M.; Deutsch, E.
- Inorp. Chem. **1978.177.431.**
- **(768)** vankldik, R. Inorg. Chzm. Acta **1980,42, 49.**
-
- **(769)** Carlyle, D. W.; King, E. L. Inorg. Chem. **1970, 9, 2333. (770)** Conklin, M. H.; Hoffmann, M. R. Environ. Sci. Technol. **1988, 22, 883.**
- (771) Pasiuk-Bronikowska, W.; Rudziński, K. J.; Bronikowski, T. In EUROTRAC Annual Report 1992, Part 6: GCE HALIPP;
International Scientific Secreteriat, Fraunhofer-Institut:
Garmisch-Partenkirchen, Germany, July 1993; pp
- (772) Çakici, A.; Çolak, S.; Ekinci, Z.; Bayrakçeken, S. *Int. J. Chem.*
Kinet. **1994**, 26, 737.
(773) Danilczuk, E.; Swinarski, A. Roczn. Chem. **1961**, 35, 1563.
(774) Carlyle, D. W.; Zeck, O. F. *Inorg. Chem.* **1973**, 12
-
-
-
-
- **(777)** Faust, B. C.; Hoftinann, M. R.; Bahnemann, D. W. *J.* Phys. Chem. **1989, 93, 6371.**
- **(778)** Johnson, M. D.; Bernard, J. Inorg. Chem. **1992,31, 5140.**
-
- (779) Ibusuki, T.; Barnes, H. M. *Atmos. Environ.* 1**984**, *18*, 145.
(780) Lim, P. K.; Hamrick, G. T. J. *Phys. Chem.* 1**984**, *88*, 1133.
(781) Siskos, P. A.; Peterson, N. C.; Huie, R. E. *Inorg. Chem.* 1**984**,
- **23, 1134.**
- **(782)** Bhargava, R.; Prasad, D. S. N.; Rani, A.; Jain, U.; Gupta, K. S.
- *Transition Met. Chem.* **1992**, *17*, 238. **1993**, 17, 238. **1993**, Meyer, J. *Ber. Deutsch. Chem. Ges.* **1901**, *34*, 3606.
-
- (784) Lister, M. W.; Rivington, D. E. Can. J. Chem. 1955, 33, 1591.
(785) Ryan, R. R.; Kubas, G. J.; Moody, D. C.; Eller, P. G. In Inorganic
Chemistry; Clarke, M. J., Goodenough, J. B., Hemmerich, P.,
Ibers, J. A., Jørgens
-
- Vol. 46 (Structure and Bonding), pp 47–100.
(786) Nyberg, B.; Larsson, R. *Acta Chem. Scand*. **1973**, 27, 63.
(787) Vepřek-Šiška, J.; Wagnerová, D. M.; Eckschlager, K. *Collect*. Czech. Chem. Commun. **1966,31, 1248.**
- **(788)** Taube, H. Chem. Rev. **1952,50,69.**
- (789) van Eldik, R. In Chemistry of Multiphase Atmospheric Systems;
Jaeschke, W., Ed.; NATO ASI Series, Series G: Ecological
Sciences Vol. 6; Springer Verlag: Berlin, 1986; pp 541–566.
(790) Weschler, C. J.; Mandich, M. L.
-
-
-
-
- (792) Kraft, J.; van Eldik, R. *Inorg. Chem.* **1989**, 28, 2306.

(793) Cabelli, D. E.; Bielski, B. H. J. J. Phys. Chem. **1984**, 88, 3111.

(794) Barlow, S.; Berglund, J.; Buxton, G. V.; McGowan, S.; Salmon, G. V.

(794) B **56.**
- **(795)** Waygood, S. J.; McElroy, W. J. *J.* Chem. *SOC.,* Faraday Trans. **1992,88, 1525.**

Transition Metal-Catalyzed Oxidation of Sulfur(lV) **Oxides Chemical Reviews, 1995,** Vol. **95,** No. 1 **187**

- (796) Chawla, O. P.; Arthur, N. L.; Fessenden, R. W. J. Phys. Chem. 1973, 77, 772.
- Behar, D.; Fessenden, R. W.; Hornak, J. P. Radiat. Phys. Chem. (797) 1982, 20, 267.
- (798) Eriksen, T. E. J. Chem. Soc., Faraday Trans. 1 1974, 70, 208. (799) Huie, R. E.; Clifton, C. L.; Altstein, N. Radiat. Phys. Chem. 1989, 33, 361.
- (800) Bartels, D. M.; Lawler, R. G. J. Chem. Phys. 1987, 86, 4843.
- Behar, D.; Fessenden, R. W. *J.* Phys. Chem. 1972, 76, 1706.
- (802) Luňák, S.; Vepřek-Šiška, J. Collect. Czech. Chem. Commun. 1976,41,3495.
- (803) Burriel-Marti, F.; Lucena Conde, F. Anal. Chim. Acta 1949, 3,
- 547. Higginson, W. C. E.; Marshall, J. W. *J.* Chem. SOC. 1967, 447. Zagorski, **2.** P.; Sehested, K.; Nielsen, S. 0. *J.* Phys. Chem. 1971, 75, 3510.
- Huie, R. E.; Neta, P. Gamma-radiolysis studies *of* the oxidation *of* sulfite solutions. Poster presented on Chemrawn VII: The Chemistry of the Atmosphere: Its Impact on Global Change. A
- World Conference, December 2-6, Baltimore, MD, 1991. Buxton, G. V.; Salmon, G. A.; Williams, J. E. The reaction *of* (807) *SO5'-* with ironfll). Poster presented on the EUROTRAC Sym-posium 94, 11-15 April 1994, Garmisch-Partenkirchen, Germany.
- McElroy, W. J.; Waygood, S. J. In Final report: Kinetics and Mechanisms of acid generation in clouds and precipitation; contract No. EV4V-0080-C(AM); McElroy, W. J., Waygood, S. J., Buxton, G. V., Salmon, G. A., Wood, N. D
- J., Warneck, P.; April 1991; pp 8–25.
McElroy, W. J.; Waygood, S. J. In *EUROTRAC Annual Report
1990, <i>Part 6: HALIPP*; International Scientific Secreteriat, Fraunhofer-Institut: Garmisch-Partenkirchen, Germany, June 1991; pp 33-36.
- (810) Betterton, E. A.; Hoffmann, M. R. *J. Phys. Chem.* 1988, 92, 5962.
-
- Maruthamuthu, P.; Neta, P. *J. Phys. Chem.* 1977, 81, 937.
Yermakov, A. N.; Zhitomirsky, B. M.; Poskrebyshev, G. A.;
Sozurakov, D. M. *J. Phys. Chem.* 1993, 97, 10712.
- Gilbert, B. C.; Stell, J. K. *J.* Chem. *SOC.,* Perkin Trans. 2 1990, 1281.
- Fischer, M.; Paydar, M.; Warneck, P.; Ziajka, J. In Laboratory Studies of the Aqueous Chemistry *of* Free Radicals, Transition Metals and Formation *of* Acidity in Clouds; Warneck, P., Contract Coordinator: Find **Reuort** of Contract No. STEP-0005-C (MB); April 1, 1990-March 31, 1992; May 1992; pp 75-87.
-
- (815) Zhang, Z.; Edwards, J. O. *Inorg. Chem.* 1992, 31, 3514.
(816) Berglund, J.; Buxton, G. V.; Elding, L. I.; McGowan, S.; Salmon, G. A. J. Chem. Soc., Faraday Trans. 1994, 90, 3309.
(817) Nichols, A. R., Jr.; Walton, J
- 1866.
- (818) Buxton, G. V.; McGowan, S.; Salmon, G. A. In Photo-oxidants: Precursors and products, Proceedings of EUROTRAC Symposium 92, Garmisch-Partenkirchen, Germany, 23rd—27th March
1992; Borrell, P. M., Borrell, P., Cvitaš, T., Seiler, W., Eds.; SPB Academic Publishing bv: The Hague, The Netherlands, 1993;
- pp 599–604.
(819) Tang, Y.; Thorn, R. P.; Mouldin, R. L., III; Wine, R. P. *J*. Photochem. Photobiol. part A 1988, *44,* 243.
-
-
- (820) Dogliotti, L.; Hayon, E. *J.* Phys. Chem. 1967, 71, 2511. (821) Hayon, E.; McGarvey, J. J. J. Phys. Chem. 1967, 71, 1472. (822) McElroy, W. J.; Waygood, S. J. *J.* Chem. SOC., Faraday Trans. 1990,86,2557.
- (823) Subhani, M. S.; Kauser, **2.** Rev. Roum. Chim. 1978,23, 1129. (824) Lesigne, B.; Ferradini, C.; Pucheault, J. *J.* Phys. Chem. 1973, 77, 2156.
- (825) Neves, E. A.; Coichev, N.; Gebert, J.; Klockow, D. Fresenius *2.* Anal. Chem. 1989,335, 386.
- (826) Huss, A., Jr.; Lim, P. K.; Eckert, C. A. *J.* Phys. Chem. 1982,86, 4224.
- (827) Schlitt, W. J.; Hiskey, J. B.; Pitt, W. G. Trans. Am. Inst. Min., Met., Pet. Eng., Soc. Min. Eng. AIME 1983, 274, 2051.
- (828) Sato, T.; Goto, T.; Okabe, T.; Lawson, F. Bull. Chem. Soc. Jpn. 1984, 57, 2082.
- (829) Bal Reddy, K.; van Eldik, R. Atmos. Enuiron. 1992, 26A, 661.
- (830) GrgiC, I.; Kocutar, M.; NoviE, M.; Bizjak, M.; Hudnik, V. In Proceedings of the 6th European Symposium "Physico-Chemical Behaviour of Atmospheric Pollutants", Varese, 1993; Vol. 2; Angeletti, G., Restelli, G., Eds.; Report EUR 15609/2 EN, Office for Official Publications of the European Communities: Lux-
emburg, 1994; pp 907-911.
(831) Coughanowr, D. R.; Krause, F. E. Ind. Eng. Chem. Fundam.
- 1966, 4, 61.
- (832) Berglund, J.; Elding, L. I. In Transport and Transformation of Pollutants in the Troposphere, Proceedings of EUROTRAC Symposium '90, Garmisch-Partenkirchen; Borell, P., Borell, P. M., Seiler, W., Eds.; SPB Academic Publishing bv: The Hague,
- The Netherlands, 1991; pp 295-298.
(833) Tiwari, B. L.; Kolbe, J.; Hayden, H. W., Jr. *Metal Trans*. **1979**, IOB, 607.
- (834) Devuyst, E. A.; Mosoiu, A.; Krause, F. In Hydrometallurgy Research, Development and Plant Practice; American Institute

of Mining, Metallurgical and Petroleum Engineers *(AIME):* New York, 1983; pp 391-403.

- (835) Bal Reddy, K; Coichev, N.; van Eldik, R. *J.* Chem. SOC., Chem. Commun; 1991, 7,481.
- 9, 426. (836) Devuyst, E. A. P.; Ettel, V. A.; Mosoiu, M. A. CHEMTECH 1979,
- (837) Davison, W.; Seed, G. *Geochim. Cosmochim. Acta* 1**983**, 47, 67.
(838) Millero, F. J.; Sotolongo, S.; Izaguirre, M. *Geochim. Cosmochim.*
- Acta 1987, 51, 793. (839) Luther, G. W. In *Aquatic Chemical Kinetics*; Stumm, W., Ed.; John Wiley & Sons: New York, 1990; pp 173–198.
- (840) Diem, D.; Stumm, W. *Geochim. Cosmochim. Acta* 1984, 48, 1571.
- (841) Sung, W.; Morgan, J. J. Enuiron. Sci. Technol. 1980, 14, 561. (842) Coichev, N.; Bal Reddy, K.; van Eldik, R. Atmos. Enuiron. 1992,
- 26A, 2295. (843) Cher, M.; Davidson, N. *J. Am. Chem. Soc.* 1955, 77, 793.
- (844) Wameck, P. In Photo-oxidants: Precursors and Products, **Pro**ceedings of the EUROTRAC Symposium 92, Garmisch-Partenkirchen, Germany, 23rd-27th March, 1992; Borrell, P. M., Borrell, P., Cvital, T., Seiler, W., Eds.; SPB Academic Publishing bv: The Hague, The Netherlands, 1993; pp 477-480.
- (845) Zeck, 0. F.; Carlyle, D. W. Inorg. Chem. 1974, 13, 34. (846) Koch, S.; Ackermann, G. *2.* Chem. 1988,28, 376.
-
- (847) Ali, M.; Saha, S. K.; Banerjee, P. Bull. Chem. Soc. Jpn. 1991, 64, 2497.
- Coichev, N.; van Eldik, R. In Photo-oxidants: Precursors and Products, Proceedings of the EUROTRAC Symposium 92, Garmisch-Partenkirchen, Germany, 23rd-27th March 1992; Borrell, P. M., Borrell, P., Cvital, T., Seiler, W., Eds.; SPB Academic Publishing bv: The Hague, The Netherlands, 1993;
- pp 589—592.
Coichev, N.; van Eldik, R.; Franz, D. A. *J. Chem. Educ*. **1994**, *71,* 767.
- Brandt, Ch.; Coichev, N.; Hostert, E.; van Eldik, R. GIT 1993, 37, 277.
- (851) Warshel, A. Computer Modelling and Chemical Reactions in
Enzymes and Solutions; John Wiley & Sons: New York, 1991.
von Piechowski, M.; Nauser, T.; Hoigné, J.; Bühler, R. E. *Ber*.
- (852)
- Bunsen-Ges. Phys. Chem. **1993**, 97, 762.
Connick, R. E.; Lee, S.; Adamic, R. *Inorg. Chem.* **1993**, 32, 565.
Drexler, C.; Elias, H.; Fecher, B.; Götz, U.; Wannowius, K. J. In
EUROTRAC Annual Report 1992, Part 6: GCE HALI national Scientific Secreteriat, Fraunhofer-Institut: Garmisch-
- Partenkirchen, Germany, July 1993; pp 23-29. (855) Elias, H.; Götz, U.; Wannowius, K. J. Atmos. Environ. 1994, 28, 439.
- (856) Yiin, B. S.; Walker, D. M.; Margerum, D. W. Inorg. Chem. 1987, 26, 3435.
- (857) Kessler, F. Poggendorffs Ann. Phys. Chem. 1863, 119 (2. Reihe), 218.
- van Eldik, R.; Coichev, N.; Bal Reddy, K.; Gerhard, A. *Ber.
Bunsen-Ges. Phys. Chem.* 1992, 96, 478.
Behra, P.; Sigg, L*. Nature* 1990, 344 (6265), 419.
-
- Zhuang, G.; Yi, **2.;** Duce, R. A.; Brown, P. R. Nature 1992,355 (6360), 537.
- Sedlak, D. L.; Hoigné, J. Atmos. Environ. 1993, 27A, 2173. (861)
- Faust, B. C.; Zepp, R. G. *Environ. Sci. Technol. 1993, 27, 2517.*
Miles, C. J.; Brezonik, P. L*. Environ. Sci. Technol. 1981, 15,* 1089.
-
- Sulzberger, B. In Aquatic Chemical Kinetics; Stumm, W., Ed.; (864) John Wiley & Sons: New York, 1990; pp 401-429.
- Lepentsiotis, V.; Prinsloo, F. F.; van Eldik, R. Kinetic and mechanistic study of the influence of mixed sulfur-nitrogen-oxides on the redox behavior of manganese and iron ions in aqueous solution. Poster presented on the Inorganic Reaction Mechanism Meeting, 93, Wiesbaden, Germany, December 13-15, 1993. Andreeva, D.; Tabakova, T.; Mitov, I.; Andreev, A. *J.* Mater. Sci.
- Mater. Elec. 1991, 2, 199. Tabakova, T.; Andreeva, D.; Andreev, A.; Vladov, Ch.; Mitov, I.
- J. Mater. *Sci.* Mater. Elec. 1992, 3, 201. Coughlin, R. W.; Matsui, I. *J.* Catal. 1976, 41, 108.
-
- Davies, S. H. R.; Morgan, J. J. *J. Colloid Interface Sci*. **1989**, *129*, 63.
- Sinner, T.; Hoffmann, P.; Knapp, C. P.; Ortner, H. M. Fresenius
J. Anal. Chem. 1**994**, 349, 334.
- (871) Dedik, A.; Hoffmann, P.; Ensling, J. Atmos. Environ. 1992, 26A, 2545.
- Zhu, X.; Prospero, J. M.; Savoie, D. L.; Millero, F. J.; Zika, R. Znu, X.; Prospero, J. M.; Savoie, D. L.; Millero, F. J.; Zikk
G.; Saltzman, R. G. J. Geophys. Res. 1993, 98 (D5), 9039.
David, F.; David, P. G. J. Phys. Chem. 1976, 80, 579.
-
- (874) Faust, B. C.; Hoffmann, M. R. Environ. Sci. Technol. 1986, 20,
- 943.
Pehkonen, S. O.; Siefert, R.; Erel, Y.; Webb, S.; Hoffmann, M.
R. *Environ. Sci. Technol.* 1**993**, 27, 2056.
- (876) Heckel, E.; Henglein, A.; Beck, G. Ber. Bunsen-Ges. Phys. Chem.
- 1966, 70, 149. Waygood, S. J. In Photo-oxidants: Precursors and products, (877) Proceedings of EUROTRAC Symposium 92, Garmisch-Parten-kirchen, Germany, 23rd-27th March 1992; Borrell, P. M., Borrell, P., Cvitag, T., Seiler, W., Eds.; SPB Academic Publishing bv: The Hague, The Netherlands, 1993; pp 585-588.
- **188** Chemical Reviews, 1995, Vol. 95, No. **1**
- **(878)** Beer, F.; Warneck, P.; Ziajka, J. In EUROTRACAnnual Report **1992,** Part 6 GCE HALIPP International Secreteriat, Fraunhofer Institut: Garmisch-Partenkirchen, Germany, July **1993;**
- **(879)** Thornton, A. T.; Laurence, G. S. *J.* Chem. SOC., Dalton Trans. pp **64-69.**
- **1973. 804. (880)** Jayson, G. G.; Parsons, B. J.; Swallow, A. J. *J.* Chem. SOC., Faraday Trans. *1* **1972,68,2053.**
- **(881)** Christensen, H.; Sehested, K. Radiat. Phys. Chem. **1981,18,723. (882)** Adams. G. E.: Boas J. W.: Michael, B. D. Trans. Faraday SOC.
- Adams, G. E.; Boag,
1965, *61*, 1417. **(883) Rush, J. D.; Bielski, B. H. J.** *J. Phys. Chem.* **1985**, 89, 5062.
 (884) Jayson, G. G.: Keene. J. P.: Stirling, D. A.: Swallow, A. J. Tran
- **(884)** Jayson, G. G.; Keene, J. P.; Stirling, D. A.; Swallow, A. J. Trans. Faraday SOC. **1969, 65, 2453.**
- **(885)** Jayson, G. G.; Parsons, B. J.; Swallow, A. J. *J.* Chem. SOC., Faraday Trans. **1 1973, 69, 236.**
-
- **(886)** Hardwick, T. J. Can. *J.* Chem. **1957, 35, 428. (887)** Waite, T. D.; Morel, F. M. M. Anal. Chem. **1984, 56, 787.**
- **(888)** Pasiuk-Bronikowska, W.; Rudzinski, K. J. In Proceedings of the 6th European Symposium "Physico-Chemical Behaviour of Atmospheric Pollutants", Varese **1993;** Vol. **2;** Angeletti, G., Restelli, G., Eds.; Report EUR **15609/2** EN, Office for Official Publications of the European Communities: Luxemburg, **1994;** pp **918-923.**
- **(889)** Tamura, H.; Goto, K.; Nagayam, M. *J.* Inorg. Nucl. Chem. **1976, 38, 113.**
- (890) Løgager, T.; Holcman, J.; Sehested, K.; Pedersen, T. Inorg. Chem. **1992,31, 3523.**
- **(891)** Gogolev, A. V.; Makarov, I. E.; Fedoseev, A. M.; Pikaev, A. K. High Energy Chem. **1986,20, 229. (892)** Ziajka, J.; Warneck, P. In Photo-oxidants: Precursors and
- Products, Proceedings of the EUROTRAC Symposium **92,** Garmisch-Partenkirchen, Germany, 23rd—27th March 1992;
Borrell, P. M., Borrell, P., Cvitaš, T., Seiler, W., Eds.; SPB Publishing bv: The Hague, The Netherlands, **1993;** pp **581- 584.**
- **(893)** Lee, Y.-J.; Rochelle, G. T. Enuiron. Sci. Technol. **1987,21, 266.**
- **(894)** Waygood, S. J. In Laboratory Studies of the Aqueous Chemistry of Free Radicals, Transition Metals, and Formation of Acidity in Clouds; Final Report, Contract No. STEP-0005-C(MB), April 1, 1990-March **31, 1992;** Warneck, P., Contract Coordinator; May **1992;** pp **53-59.**
- **(895)** Baral, S.; Lume-Pereira, C.; Janata, E.; Henglein, A. *J.* Phys. Chem. **1986,90,6025.**
- **(896)** Pick-Kaplan, M.; Rabani, J. *J.* Phys. Chem. **1976,80, 1840.**
- **(897)** Prinsloo, F. F. Personal communication. University of Potchefstroom, South Africa.
- **(898)** Pasiuk-Bronikowska, W.; Bronikowski, T.; Ulejczyk, M. Manganese-catalyzed autoxidation of sulphite under steady-state conditions. Poster presented on the EUROTRAC Symposium **94, 11- 15** April **1994,** Garmisch-Partenkirchen, Germany.
- **(899)** Sukhov, N. L.; Akinshin, M. A,; Ershov, B. G. High Energy Chem. **1986, 20, 303.**
- **(900)** Meyerstein, D. Inorg. Chem. **1971, 10, 638.**
- **(901)** Baxendale, J. H.; Fielden, E. M.; Keen, J. P. Proc. *R.* SOC. London, Ser. A **1965,286, 320.**
- **(902)** Kozlov, Yu. N.; Berdnikov, V. M. Russ. *J.* Phys. Chem. **1973, 47, 338.**
- **(903)** Moffett, **J.** W.; Zika, R. G. Enuiron. Sci. Technol. **1987,21, 804.**
- **(904)** Moffett, J. W.; Zika, R. G. Mar. Chem. **1983, 13, 239.** (905) Grgić, I.; Hudnik, V., Bizjak, M.; Levec, J. Atmos. Environ. **1991**, **25A, 1591.**
- **(906)** Zhang, J.-Z.; Millero, F. J. Geochim. Cosmochim. Acta **1991,55, 677.**
- **(907)** Beilke, S.; Gravenhorst, G. Atmos. Enuiron. **1978, 12, 231.**
- **(908)** Tanaka, S.; Darzi, M.; Winchester, J. W. Enuiron. Sci. Technol. **1981, 15, 354.**
- **(909)** Colin, J. L.; Jaffrezo, J. L.; Gros, J. M. Atmos. Enuiron. **1990,** *24A,* **537.**
- **(910)** Germani, M. S.; Zoller, W. H. Atmos. Enuiron. **1994,28, 1393. (911)** Harris, W. R.; Silberman, D. Enuiron. Sci. Technol. **1983, 17,**
- **139.** (912) Grgić, I.; Hudnik, V.; Bizjak, M.; Levec, J. Atmos. Environ. 1993,
- **27A, 1409. (913)** Madnawat, P. V. S.; Rani, A.; Sharma, M.; Prasad, D. S. N.;
- Gupta, K. S. Atmos. Environ. **1993**, 27A, 1985.

(914) Gatz, D. F.; Chu, L.-C. In Advances in Environmental Science
- and Technology; Nriagu, J. O., Davidson, C. I., Eds.; John Wiley & Sons: New York, **1986;** Vol. **17** (Toxic Metals in the Atmosphere), pp **391-408. (915)** Lim, B.; Jickels, T. D. Global Biogeochem. Cycles **1990,4, 445.**
- **(916)** Lindberg, S. E.; Harriss, R. C. *J.* Geophys. Res. **1983,** 88 (C9),
- **5091. (917)** Theis, **T.** L.; Wirth, J. L. Enuiron. Sci. Technol. **1977,11, 1096.**
- **(918)** Statham, P. J.; Chester, R. Geochim. Cosmochim. Acta **1988, 52, 2433.**
- **(919)** Giusti, L.; Yang, Y. L.; Hewitt, C. N.; Hamilton-Taylor, J.; Davison, W. Atmos. Enuiron. **1993,27A, 1567.**
- **(920)** Stedman, J. R.; Heyes, C. J.; Irwin, J. G. Water Air Soil Pollut. **1990, 52, 377.**
- **(921)** Sequeira, R. Atmos. Enuiron. **1988,22, 369.**
- **(922)** Weschler, C. J.; Graedel, T. E. In Heterogeneous Atmospheric Chemistry; Schryer, D. R., Ed.; Geophysical Monograph **26;** American Geophysical Union: Washington, DC, **1982;** pp **196- 202.**
- **(923)** Sazonov, V. A.; Popovskii, V. V.; Boreskov, G. K. Kinetika i Kataliz **1968, 9, 312.**
- **(924)** Bhargava, P.; Rani, A.; Gupta, K. S. Indian *J.* Chem. **1993,32A, 713.**
- **(925)** Gupta, K. S.; Madnawat, P. V. S.; Rani, A.; Sharma, M.; Prasad, D. S. N.; Jain, **U.;** Bhargava, P.; Saxena, D. In Topics in Chemistry Series **1:** Chemical Kinetics and Reaction Mechanism; Gupta, K. S., Ed.; RBSA Publishers: Jaipur, India, **1991;** pp **117-163.**
- (926) Kent, S. A.; Katzer, J. R.; Manogue, W. H. Ind. Eng. Chem.
Fundam. 1977, 16, 443.
(927) Kim, K. H.; Choi, J. S. J. Phys. Chem. 1981, 85, 2447.
(928) Ishikawa, T.; Sakaiya, H.; Kondo, S. J. Chem. Soc., Faraday
-
- Trans. **1 19&3,84, 1941.**
- **(929)** Brodzinsky, R.; Chang, S. G.; Markowitz, S. S.; Novakov, T. *J.* Phys. Chem. **1980, 84, 3354.**
- **(930)** Harrison, R. M.; Pio, C. A. Atmos. Enuiron. **1983, 17, 1261.**
- **(931)** Chen, L. C.; Peoples, S. M.; McCarthy, J. F.; Amdur, M. 0. Atmos. Enuiron. **1989,23, 149.**
- (932) Grgić, I.; Hudnik, V.; Bizjak, M.; Levec, J. Atmos. Environ. 1992, **26A, 571.**
- **(933)** Gupta, K. S.; Madnawat, P. V. S.; Bhargava, R.; Prasad, D. S. N.; Sharma, M.; Rani, A. In Precipitation, Scavenging and Atmosphere-Surface Exchange; Schwartz, S. E., Slinn, W. G. N., Eds.; Hemisphere Publishing Corporation: Washington, **1992;** Vol. **1** (The Georgii Volume: Precipitation Scavenging Processes), pp **153-160.**
- **(934)** Judeikis, H. S.; Stewart, T. B.; Wren, A. G. Atmos. Enuiron. **1978, 12, 1633.**
- **(935)** Dlugi, R.; Jordan, S.; Lindemann, E. *J.* Aerosol Sci. **1981, 12, 185.**
- **(936)** Mamane, Y.; Gottlieb, J. *J.* Aerosol Sci. **1989,20, 303.**
- **(937)** Clarke, A. G.; Radojevic, M. Atmos. Enuiron. **1984, 18, 2761.**
- **(938)** Sievering, H.; Boatman, J.; Galloway, J.; Keene, W.; Kim, Y.; Ray, J. Atmos. Enuiron. **1991,25A, 1479.**
- **(939)** Weisweiler, W.; Gund, G.; Wien, F. Staub **1993, 53, 275.**
-
- **(940)** De Santis, F.; Allegrini, I. Atmos. Enuiron. **1992,26A, 3061. (941)** Rogowski, R. S.; Schryer, D. R.; Cofer, W. R., 111; Edahl, R. A,, Jr.; Munavalli, S. In Heterogeneous Atmospheric Chemistry; Schryer, D. R., Ed.; Geophysical Monograph 26; American Geophysical Union: Washington, DC, 1982; pp 174-177.

(942) Lamb, D.; Miller, D. F.; Robinson, N. F.; Gertler, A. W. Atmos.
- Enuiron. **1987.21. 2333. (943)** Rani,A.; Prasad, D'. S. N.; Bhargava, R.; Gupta, K. S. Bull. Chem.
- **(944)** Leland, J. K.; Bard, A. J. *J.* Phys. Chem. **1987,91, 5076.** SOC. Jpn. **1991, 64, 1955.**
-
- **(945)** Cheng, R. T.; Corn, M.; Frohliger, J. 0. Atmos. Enuiron. **1971, 5. 987.**
- **(946)** Cains, P. W.; Carabine, M. D. *J.* Chem. SOC., Faraday Trans. **1 1978, 74, 2689.**
- **(947)** Petrenchuk, **0.** P.; Drozdova, V. M. Tr. GI. *Geofiz.* Obseru. **1969, 238, 201.** Cited after: Chem. Abstr. **1971, 74, 5699x.**
- **(948)** Schulze, E.-D. Science **1989,244 (4906), 776.**
- **(949)** Gravenhorst, G.; Hofken, K. D.; Georgii, H. W. In Acid Deposi-tion, Proceedings of the CEC Workshop organized as part of the concerted action "Physico-Chemical Behaviour of Atmospheric Pollutants", Berlin **9** September **1982;** Beilke, S., Elshout, A. J., Eds.; D. Reidel Publishing Company: Dordrecht, **1983;** pp **155- 171.**
- **(950)** Wickert, K.; Nolten, K.; Kroll, J.; Ipach, E. Arch. Metallk. **1949, 3, 105.**
- **(951)** Miller, D. F.; Lamb, D.; Gertler, A. W. Atmos. Enuiron. **1987, 21, 991.**
- **(952)** Santachiara, G.; Prodi, F.; Vivarelli, F. In Precipitation, Scauenging and Atmosphere-Surface Exchange; Schwartz, S. E., Slinn, W. G. N., Eds.; Hemisphere Publishing Corporation: Washing-ton, **1992;** Vol. 1 (The Georgii Volume: Precipitation Scavenging Processes), pp **177-187.**
-
- (953) Martin, L. R.; Hill, M. W. Atmos. Environ. 1987, 21, 1487.
(954) Lim, P. K. Ph.D. Thesis, University of Illinois, Urbana, 1979.
Cited after: Huss, A.; Lim, P. K.; Eckert, C. A. J. Phys. Chem. **1982,86,4224.**
- **(955)** Martin, L. R.; Good, T. W. Atmos. Enuiron. **1991,25A, 2395.**
- **(956)** Koren, R.; Perlmutter-Hayman, B. Inorg. Chem. **1972,11,3055. (957)** Sen Gupta, K. K.; Das, S.; Sen Gupta, S. Transition Met. Chem. **1987, 12, 417.**
- **(958)** Mever, L. Ber. Deutsch. Chem. Ges. **1887,20, 3058.**
-
- **(959)** HuIe, R. E.; Clifton, C. L. *J.* Phys. Chem. **1990, 94, 8561. (960)** Chawla, **0.** P.; Fessenden, R. W. *J.* Phys. Chem. **1975,79,2693.**
- **(961)** Padmaja, S.; Neta, P.; Huie, R. E. Int. *J.* Chem. Kinet. **1993,25, 445.**
- **(962)** Bock, R.; Herrmann, M. *2.* Anog. Allg. Chem. **1953,273,** 1.
- **(963)** Millero, F. J.; Izaguirre, M. *J.* Sol. Chem. **1989, 18, 585. (964)** Wells, C. F. *J.* Inorg. Nucl. Chem. **1968, 30, 893.**
-
-
-
-
-
- (966) Theis, T. L.; Singer, P. C. *Environ. Sci. Technol.* **1974**, 8, 569.
(967) Klug-Roth, D.; Rabani, J. J. Phys. Chem. **1976**, 80, 588.
(968) Gaede, W.; van Eldik, R. *Inorg. Chem.* **1994**, 33, 2204.
(969) Mohapatra, S. *Chem.* **1980,19,2265.**
- **(971)** Martin, L. R.; Hill, M. W. *Atmos. Enuiron.* **1987,21, 2267. (972)** Bronikowski, T. *React. Kinet. Catal. Lett.* **1979, 10, 139.**
- **(973)** Ulrich, R. K.; Rochelle, G. T.; Prada, R. E. *Chem. Eng. Sci.* **1986, 41, 2183.**
-
- **(974)** Reda, M. *Water Sci. Technol.* **1988,20, 45. (975)** Price, T. S. *2. Phys. Chem.* **1898,27, 474.**
-
-
-
- (976) D'Ans, J.; Mattner, J. *Angew. Chem.* **1953**, 65, 368.
(977) Altwicker, E. R.; Nass, K. K. *Atmos. Environ*. **1983**, 17, 187.
(978) Ibusuki, T.; Takeuchi, K. *Atmos. Environ*. **1987**, 21, 1555.
(979) Mishra, G. C.; S
- **26, 401. (980)** Fedorova, S. K.; Skibida, I. P.; Gladkii, A. V. *J. Appl. Chem. USSR* **1976, 49, 753.**
- **(981)** Braga, T. G.; Connick, R. E. In *Flue Gas Desulfurization;* Hudson, J. L., Rochelle, G. T., Eds.; ACS Symposium Series **188;** American Chemical Society: Washington, DC, **1982;** pp **153- 171.**
- **(982)** Bravo Rodriguez, V.; Camacho Rubio, F.; Moya Vilar, M. *An. Quim.* **1993, 89, 325.** Cited after: *Chem. Abstr.* **1994, 120, 221635j.**
- **(983)** Chen, T.; Barron, C. H. *Znd. Eng. Chem. Fundam.* **1972,11,466.**
- **(984)** Sawicki, **J.** E.; Barron, C. H. *Chem. Eng. J.* **1973,5, 153. (985)** Bengtsson, S.; Bjerle, I. *Chem. Eng. Sci.* **1975, 30, 1429.**
-
- **(986)** Yagi, S.; Inoue, H. *Chem. Eng. Sci.* **1962,17, 411.**
- **(987)** Srivastava, R. D.; McMillan, A. F.; Harris, I. J. *Can. J. Chem. Eng.* **1968,46, 181.**
- **(988)** Nfvlt, V.; KaStanek, F. *Collect. Czech. Chem. Commun.* **1976, 40, 1853.**
- **(989)** Neefakantan, K.; Gehlawat, J. K. *Znd. Eng. Chem. Fundam.* **1980, 19, 36.**
-
- **(990)** Alper, E. *Trans. Znst. Eng.* **1973, 51, 159. (991)** Reith, T.; Beek, W. J. *Chem. Eng. Sci.* **1973,28, 1331.**
- **(992)** Onken, **U.;** Schalk, W. *G'er. Chem. Eng.* **1978,** *I,* **191. (993)** Sathyamurthy, N.; Degaleesan, T. E.; Chandrasekharan, K.;
- Laddha, G. S. *Can. J. Chem. Eng*. **1979**, 57, 145.
(994) Barron, C. H.; O'Hern, H. A. *Chem. Eng. Sci.* **1966**, 21, 397.
(995) Matsuura, A.; Harada, J.; Akehata, T.; Shirai, T. J. *Chem. Eng*.
- *Jpn.* **1989, 2, 199.**
- **(996)** Hoffmann, M. R.; Boyce, S. D. In *Advances in Environmental Science and Technology;* Schwartz, S. E., Ed.; John Wiley & Sons: New York, **1983;** Vol. **12** (Trace Atmospheric Constituents), pp $148 - 189$
- **(997)** Onda, K.; Takeuchi, H.; Maeda, Y. *Chem. Eng. Sci.* **1972, 27, Ad9 -1.**
- **(998)** Pasiuk-Bronikowska, W.; Rudzinski, K. J. In *Photo-oxidants: Precursors andproducts,* Proceedings of ELJROTRAC Symposiun **92,** Garmisch-Partenkirchen, Germany, **23rd-27th** March **1992;** Borrell, P. M., Borrell, P., CvitaS, T., Seiler, W., Eds.; SPB Academic Publishing bv: The Hague, The Netherlands, **1993;** pp **577-580.**
- **(999)** Albu, H. W.; Graf von Schweinitz, H. D. *Ber. Deutsch. Chem.* **G'es. 1932. 65B. 729.**
- **(1000)** Khorunzky, B. I.; Mot'ka, S. M.; Denisov, V. V. In *Kataliz i Katalizatory;* Mukhlenov, I. P., Ed.; Technology Institute of Leningrad: Leningrad, **1983;** pp **12-18.** Brimblecombe, P.; Spedding, D. J. *Chemosphere* **1974, 3, 29.**
- **(1001)**
- **(1002)** Fuzzi, S. *Atmos. Environ.* **1978, 12, 1439.**
- **(1003)** (a) Rossner, B.; Schwedt, G. *Fresenius 2. Anal. Chem.* **1986, 320, 566.** (b) Colenutt, B. A. *Enuiron. Poll. (Series B)* **1986,** *10,* **77.** *(c)* Weidenauer, M.; Hoffmann, P.; Lieser, K. H. *Fresenius 2. Anal. Chem.* **19843,331, 372.**
- **(1004)** (a) Weiss, **J.** *CLB Chemie Labor Betrieb* **1983,34,293.** Weiss, J. *CLB Chemie Labor Betrieb* **1983,34,342.** *(c)* Weiss, J. *CLB Chemie Labor Betrieb* **1983,34,494.** (d) Weiss, **J.** *CLB Chemie Labor Betrieb* **1984, 35, 59.**
- (1005) Weiss, **J.** *Handbuch der Zonenchromatographie (Handbook of Zon chromatography);* Verlag Chemie: Weinheim, Germany, **1985.**
- **(1006)** Petrie, L. M.; Jakel, E. M.; Brandvig, R. L.; Kroening, J. G.
- **(1007)** *Anal. Chem.* **1993, 65, 952.** Haber, **F.;** Wansbrough-Jones, 0. H. *2. Phys. Chem. (Leipig)* **1932,18B, 103.**
- **(1008)** Baumgarten, P.; Erbe, H. *Ber. Deutsch. Chem. Ges.* **1937,70B, 2235.**
- **(1009) (1010)** Boyce, S. D.; Hoffmann, M. R.; Hong, P. **A.;** Moberly, L. M. *Enuiron. Sci. Technol.* **1983,** *17,* **602.** Ali, M.; Saha, S. K.; Banerjee, P. *J. Chem. Soc., Dalton Trans.*
- **(1011)** Hansen, L. D.; Whiting, L.; Eatough, D.; Jensen, T. E.; Izatt, **1990, 187.**
- R. M. *Anal. Chem.* **1976,48,634.**
- **(1012)** Sato, T.; Okabe, T. *Nippon Kagaku Kaishi* **1977, 1124.** Cited after: *Chem. Abstr.* **1977,87, 141906h.**
- **(1013)** Pollard, **F.** H.; Hanson, P.; Nickless, G. *J. Chromatogr.* **1961, 5, 68.**
- **(1014)** Reichel, E. Untersuchungen zur induzierten Oxidation durch Sulfit in **Rauchgasentschwefelungsadagen** nach dem Kalksteinwaschverfahren (Investigation of the induced oxidation by sulfite in the **flue** gas desulfurization system according to the
- limestone wash procedure). Diplomarbeit, Fachoberschule
Bochum (Abteilung Gelsenkirchen), Bochum, Germany, 1991.
(1015) Huie, R. E.; Peterson, N. C. In Advances in Environmental
Science and Technology; Schwartz, S. E., Ed. ents), pp 117–146.
(1016) Lew, Y. J.; Powell, R. E. *Inorg. Chem.* **1973**, *12*, 957.
(1017) Bassett, H.; Henry, A. J. J. Chem. Soc. **1935**, 914.
(1018) Cavicchi, G. *Ann. Chim. (Rome)* **1951**, 41, 411.
(1019) Brown, A.; H
-
-
-
- **1972, 166.**
- **(1020)** Sarala, R.; Stanbury, D. M. *Znorg. Chem.* **1990,29, 3456.**
- **(1021) Sato,** T.; Okabe, T. *Nippon Kagaku Kaishi* **1978, 361.** Cited after: *Chem. Abstr.* **1978,88, 163127~.**
- (1022) Gélis, P. M. A. *Ann. Chim. Phys. Ser. 3* 1862, 65, 222
- (1023) Pirt, S. J.; Callow, D. S.; Gillett, W. A. *Chem. Ind.* **1957**, 730.
(1024) Junge, C. E.; Ryan, T. G. *Q. J. R. Met. Soc.* **1958**, *84*, 46.
(1025) Vadjić, V.; Gentilizza, M.; Gomzi, Z. *Staub* **1986**, 46, 125.
(102
-
-
- **249.**
- **(1027)** Warneck, P. In *Formation, Distribution and Chemical Tramformation of Air Pollutants;* Zellner, R., Ed.; Dechema Monographs Vol. **104;** Verlag Chemie: Weinheim, Germany, **1987; DD 99-113.**
- **(1028)** Levsen, **K.;** Behnert, S.; Mussmann, P.; Raabe, M.; Priess, B. *Znt. J. Enuiron. Chem.* **1993,52, 87.**
- **(1029)** Owens, M. A.; Herwehe, J. A. *Atmos. Enuiron.* **1969,23, 519. (1030)** Chameides, W. L.; Stelson, A. W. *Ber. Bunsen-Ges. Phvs. Chem.*
- **1992, 96, 461.**
- **(1031)** Topol, L. E. *Atmos. Enuiron.* **1986,20, 347.**
- **(1032)** Grennfelt, P.; Hov, 0.; Dement, D. *Ambw* **1994, 23, 425.**
- **(1033)** Agren, C. *Acid News* **1994,4** (Oct. **19941, 10.**
-
- **(1034)** Fricke, W.; Uhse, K. *Staub* **1994,54, 289. (1035)** Palmgren Jensen, F.; Fenger, J. *Enuiron. Health Perspect.* **1994, 102** (Suppl. **41, 55.**
- **(1036)** Ryaboshapko, **A.** G.; Sukhenko, V. V.; Paramonov, S. G. *Tellus* **1994,46B, 205.**
- **(1037)** Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; Ferrara, R.; Cioni, R.; Raco, B.; Taddeucci, G. *J. Geophys. Res.* **1994,99** D9), **18827.**
- **(1038)** kgren, C. *Acid News* **1994,3** (June **1994), 5.**
- **(1039)** Serca, D.; Delmas, R.; Jambert, C.; Labroue, L. *Tellus* **1994, 46B, 243.**
- **(1040)** Barnes, I.; Becker, K. H.; Patroescu, I. *Gkophys. Res. Lett.* **1994, 21, 2389.**
- **(1041)** Wiersma, G. B.; White, G. J.; Palmer, D.; Burns, D. A. *Enuiron.* **(1042)** Ashenden, T. W.; Edge, C. P. *Enuiron. Pollut.* **1995, 87, 11.** *Pollut.* **1996, 87, 151.**
-
- **(1043)** Hryniewicz, R.; Przybylska, G. *Ekol. Pollut.* **1994, 41, 75.**
- **(1044)** Lee, D. S.; Garland, J. A.; Fox, A. A. *Atmos. Enuiron.,* **1994, 28, 2691.**
- **(1045)** Chester, R.; Bradshaw, G. F.; Corcoran, P. A. *Atmos. Enuiron.* **1994,28, 2873.**
- **(1046)** Kubilay, N.; Yemenicioglu, S.; Saydam, C. *Fresenius Enuiron.* **(1047)** Vartiainen, M.; McDow, S. R.; Kamens, R. M. *Chemosphere Bull.* **1994, 3, 444.**
- **1994,29, 1661.**
- **(1048)** Russel, L. M.; Pandis, S. N.; Seinfeld, J. H. *J. Geophys. Res.* **1994,99** (DlO), **20989.**
- **(1049)** Erisman, J. W.; Baldocchi, D. *Tellus* **1994,46B, 159.**
- (1050) Ravichandran, C.; Padmanabhamurty, B. *Atmos. Enuiron.* **1994,28, 2291.**
- **(1051)** Khemani, L. T.; Momin, G. A.; Rao, P. S. P.; Pillai, A. G.; Safai,
- P. D.; Mohan, K.; Rao, G. *Atmos. Enuiron.* **1994,28, 3145. (1052)** Moller, D.; Acker, K.; Wieprecht, W. In Proceedings of the Sixth European Symposium "Physico-Chemical Behaviour of Atmospheric Pollutants", Varese **18-22** October **1993,** Vol. **2; An-**geletti, G., Restelli, G., Eds.; Report EUR **15609/2** EN, Office for Official Publications of the European Communities: Luxemburg, **1994;** pp **968-974. (1053)** Maupetit, F.; Delmas, R. J. *Tellus* **1994, 46B, 304.**
-
- P. D.; Pillai, A. G. *Environ. Pollut.* **1995, 87, 167. (1054)** Naik, M. S.; Khemani, L. T.; Momin, G. A.; Rao, P. S. P.; Safai,
- **3519.** (1055) Berg, T.; myset, 0.; Steinnes, E. *Atmos. Enuiron.* **1994, 28,**
-
- (1056) Goss, K.-U. Atmos. Environ. 1994, 28, 3513.
(1057) Liu, I.-H.; Chang, C.-Y.; Liu, S.-C.; Chang, I.-C.; Shih, S. M.
Atmos. Environ. 1994, 28, 3409.
(1058) Wennberg, P. O.; Cohen, R. C.; Stimpfle, R. M.; Koplow, J. P.
- Anderson, J. G.; Salawitch, R. J.; Fahey, D. W.; Woodbridge, E. L.; Keim, E. R.; Gao, R. S.; Webster, C. R.; May, R. D.; Toohey, D. W.; Woodbridge, E. L.; Keim, E. R.; Gao, R. S.; Webster, C. R.; May, R. D.; Toohey, D. W.; 266 (5184), 398.
- **(1060)** Toumi, R.; Bekki, S.; Law, K. S. *Nature* **1994,372 (6504), 348. (1061)** Vogt, R.; Finlayson-Pitts, B.J. *Geophys. Res. Lett.* **1994, 21, 2291.**
-
-
- (1062) Hanson, D. R.; Lovejoy, E. R. *Geophys. Res. Lett.* **1994**, 21, 2401. (1063) Smyth, S. B.; Peters, L. K.; Berkowitz, C. M.; Daum, P. H.; Roldgers, M. O. J. *Geophys. Res.* 1994, 96 (DS), 16933. (1064) Snider, J. R.; *Res. Lett.* **1994,21, 2392.**
-
-
- (1066) Zuo, Y. *Naturwissenschaften* **1994**, 81, 505.
(1067) Wawrzenczyk, M.; Cyfert, M. *Polish J. Chem.* **1994**, 68, 1615.
(1068) Zhao, X. S.; Cai, G. Y.; Wang, Z. Z.; Wang, Q. X.; Yang, Y. H.;
Luo, J. S. Appl. Catal. B
- of the Sixth European Symposium "Physico-Chemical Behaviour of Atmospheric Pollutants", Varese **18-22** October **1993,** Vol. **2;** Angeletti, G., Restelli, G., Eds.; Report EUR **15609/2** EN, Office for Official Publications of the European Communi-
- ties: Luxemburg, **1994;** pp **901-906. (1070)** Pasiuk-Bronikowska, W.; Rudzinski, K. J. In Proceedings of the Sixth European Symposium "Physico-Chemical Behaviour of Atmospheric Pollutants", Varese **18-22** October **1993,** Vol. **2;** Angeletti, G., Restelli, G., Eds.; Report EUR **1560912** EN,

- Office for Official Publications of the European Communities:

Luxemburg, 1994; pp 912–917.

(1071) Pasiuk-Bronikowski, S. Bronikowski, T. In Proceedings of the

Sixth European Symposium "Physico-Chemical Behaviour of

Atm for Official Publications of the European Communities: Lux-
- emburg, 1994; pp 918–923.
(1072) **Sedlak,** D. L.; Hoigne, J. *Environ. Sci. Technol.* **1994**, *28*, 1898.
(1073) Zhang, Z.; Edwards, J. O.; Rieger, P. H*. Inorg. Chim. Acta* **1994, 221, 25.**
- **(1074)** Hermann, **H.;** Exner, M.; Raabe, G.; Reese, A.; Zellner, R. In Proceedings of the Sixth European Symposium "Physico-Chemical Behaviour of Atmospheric Pollutants", Varese **18- 22** October **1993,** Vol. **2;** Angeletti, G., Restelli, G., Eds.; Report EUR **15609/2** EN, Office for Official Publications of the European Communities: Luxemburg, **1994;** pp **936-941. (1075)** Shi, **X.** L. *J. Inorg. Eiochem.* **1994,** *56,* **155.**
-
- **(1076)** Barlow, S.; Buxton, G. V.; Salmon, G. A.; Williams, J. E. In EUROTRAC Annual Report **1993,** Part **6,** Section 11: HALIPP EUROTRAC International Scientific Secretariat: Garmisch-Partenkirchen, Germany, July **1994;** pp **48-53.**

CR940111E